
TransRepair: Context-aware Program Repair
for Compilation Errors

Xueyang Li
∗

SKLOIS, IIE, CAS

School of Cybersecurity, UCAS

China

Shangqing Liu
∗

Nanyang Technological University

Singapore

Ruitao Feng

University of New South Wales

Australia

Guozhu Meng
†

SKLOIS, IIE, CAS

School of Cybersecurity, UCAS

China

Xiaofei Xie

Singapore Management University

Singapore

Kai Chen

SKLOIS, IIE, CAS

School of Cybersecurity, UCAS

BAAI

China

Yang Liu

Nanyang Technological University

Singapore

ABSTRACT
Automatically fixing compilation errors can greatly raise the pro-

ductivity of software development, by guiding the novice or AI

programmers to write and debug code. Recently, learning-based

program repair has gained extensive attention and became the state-

of-the-art in practice. But it still leaves plenty of space for improve-

ment. In this paper, we propose an end-to-end solution TransRepair

to locate the error lines and create the correct substitute for a C

program simultaneously. Superior to the counterpart, our approach

takes into account the context of erroneous code and diagnostic

compilation feedback. Then we devise a Transformer-based neural

network to learn the ways of repair from the erroneous code as well

as its context and the diagnostic feedback. To increase the effec-

tiveness of TransRepair , we summarize 5 types and 74 fine-grained

sub-types of compilations errors from two real-world program

datasets and the Internet. Then a program corruption technique is

developed to synthesize a large dataset with 1,821,275 erroneous C

programs. Through the extensive experiments, we demonstrate that

TransRepair outperforms the state-of-the-art in both single repair

accuracy and full repair accuracy. Further analysis sheds light on

the strengths and weaknesses in the contemporary solutions for

future improvement.

CCS CONCEPTS
• Software and its engineering → Software defect analysis;
Automatic programming; • Computing methodologies→Ma-
chine translation.

KEYWORDS
Program repair, compilation error, deep learning, context-aware

1 INTRODUCTION
Automated program repair, which aims at fixing the underlying er-

rors in a program, plays a critical role in the software development

∗
Both authors contributed equally to this research.

†
Corresponding author.

cycle. Generally, it can be roughly categorized into program logical

error fixing and compilation error fixing. Compared with the wide-

spread attention on repairing program logical errors [8, 22, 29, 37],

the compilation error fixing has just gotten into the horizon of

researchers in the past few years [2, 19, 50]. Besides raising the

productivity of software development, it can also facilitate the AI

programming, such as code generation [7, 12] and binary decompi-

lation [16, 24]. Recent research shows that AI programmers may

produce lots of erroneous code (including compilation errors) as

human novice programmers did [45]. However, it is non-trivial yet

to automatically fix compilation errors in an undocumented pro-

gram [13].Moreover, the errormessages returned by a compilermay

be obscure and cryptic considering the compiler is evolving with

new features and optimization techniques [44]. As a consequence,

it is desired and beneficial that the program with compilation errors

can be automatically repaired to raise programming productivity

and prompt AI programming.

Automated program repair for compilation errors is a far-from-

settled problem. Prior studies [2, 6, 19, 39] directly utilized RNN-

based encoder-decoder framework to take as input the broken

program to generate the exact fix. However, the selected model

architecture has the limited learning capacity and drawbacks such

as RNNs struggle with long-range dependencies in a sequence.

Furthermore, other studies [1, 38, 50] have demonstrated that the

compiler diagnostic feedback is valuable to improve the accuracy.

For example, DrRepair [50] proposed to construct the program-

feedback graph by connecting same identifiers in source code and

symbols (e.g., identifiers, types, operators) in the compiler feed-

back to encode the semantic correspondence and further utilized

graph attention network to capture relations between program and

message to fix the broken program. DrRepair has achieved the state-

of-the-art performance and outperforms previous approaches that

ignore the compiler feedback significantly. However, through our

in-depth analysis of the feedback produced by the compiler, we find

that the correspondence between the location of the broken code

and the error message is not completely accurate. A simple example

is illustrated in Figure 1. It shows that the feedback produced by

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

1 Broken Code:
2 #include<stdio.h>
3 #include<stdlib.h>
4 int N;
5 int main()
6 {
7 int n,i;
8 scanf("%d", &n);

9 int A;

10 N=n;
11 A=(int *)malloc(n*sizeof(int));
12 for(i=0;i<n;i++) scanf("%d ", &A[i]);
13 }
14 GCC Feedback: line 12 Error Message: subscripted value is

neither array nor pointer nor vector↩→

Figure 1: The broken code with its compiler message.

GCC compiler consists of the reported line number (i.e., line 12 in

Figure 1) and the error messages. The root cause is at line 9 and

the identifier 𝐴 should be declared as a pointer type (i.e., “int A”

→ “int ∗A”). However, the feedback produced by GCC depicts that

there is an error at line 12. The location of the root cause in the

broken program and the line number produced in the feedback are

mismatched, which demonstrates that the error message fails to re-

veal the reason of this error. Hence, the graph constructed based on

the feedback may not capture the essence of errors. Furthermore,

in Figure 1, we also find that there is no symbol existing in the

feedback and the program-feedback graph cannot be constructed.

Finally, the context (highlighted in blue of Figure 1) can infer that

the identifier A is a pointer rather than an integer, but this part of

context information is ignored in current works.

On the other hand, high quality training data is demanding for

learning-based program repair [43]. There are two open-source

datasets with compilation errors of C programming language (i.e.,

DeepFix [19] and TRACER [2]). The DeepFix dataset contains 37,415

correct programs and 6,971 broken programs, which fail to pass

the compilation and TRACER contains 21,994 single-line error pro-

grams
1
. Although the dataset is further augmented [50] by a pro-

gram corruption approach, the synthesized code is limited in error

types so that the repair performance will be greatly degraded in

front of arbitrary errors in reality. Additionally, the data for training

a repair model is not yet extensively evaluated, so it is unclear what

types of errors cannot be well learned and the underlying cause.

To address the aforementioned challenges, in this study, we pro-

pose a context-aware program repair technique to fix compilation

errors. To enrich the diversity of the broken programs, we conduct a

comprehensive analysis on compilation errors from two real-world

programs (i.e., DeepFix and TRACER) and relevant questions in

StackOverflow. We summarize these common compilation errors

and obtain 74 compilation errors in terms of syntax and semantics.

We further classify these errors in 5 different groups. We propose

fine-grained perturbation strategies for each type of tokens in a

program, and develop an automated approach to break programs

with specific errors. In such a manner, we synthesize a dataset with

1,821,275 broken programs in line with the real error scenario.

We further devise a Transformer-based program repair model (i.e.,

TransRepair) that takes as input each line of a broken program, the

1
The exact number is mismatched with the reported number in the original paper [2],

since we filter out some obvious error samples.

context for each line of statements and the error message to locate

the errors and then fix them. A pointer mechanism is incorporated

into the model that proves to be effective in solving errors involved

with out-of-vocabulary code tokens. The extensive experiments on

two open-source dataset DeepFix and TRACER have demonstrated

that TransRepair outperforms current state-of-the-art DrRepair in

repair accuracy by 4.66% and 5.7% on DeepFix and TRACER, re-

spectively. The ablation studies for both model components and

training data reveal the importance in lifting the repair efficacy.

The result analysis concludes that our approach performs the best

in fixing “statement” errors and gains more advantages for “type

mismatch” and “variable declaration” errors compared to DrRepair.

Contributions. We summarize the main contributions as follows:

• We empirically analyze the common compilation errors from

two public datasets and StackOverflow, concluding 74 concrete

patterns of compilation errors and 5 categories. Based on that, we

further design a number of fine-grained perturbation strategies

to create a dataset of diverse broken problems.

• We propose a Transformer-based repair model, which takes each

line of a broken program, its context and error messages as in-

put to locate and repair the erroneous code. According to the

best of our knowledge, we are the first to consider the context

information for repairing the compilation errors.

• The extensive experiments on two open-source datasets demon-

strate that TransRepair outperforms the state-of-the-art in both

single repair and full repair. Moreover, the ablation and failure

case studies identify the inherent advantages and limits in light

of different types of errors.

More details about code, model and experimental results can be

accessed from [28] to benefit the academia and industry. The rest of

this paper is organized as follows. Section 2 presents an overview

of our approach. Section 3 introduces the data synthesis to con-

struct a corrupted dataset. Section 4 and Section 5 are the detailed

presentation of data parsing and model design. We introduce the

experimental setup and analyze experimental results in Section 6

and Section 7 respectively. Section 8 details the threats to validity

of our work, followed by the related work in Section 9. We conclude

our paper in Section 10.

2 SYSTEM OVERVIEW
In this section, we first formulate the research problem, then provide

an overview of our approach.

2.1 Problem Formulation
Following the existing works [1, 38, 50], TransRepair aims at re-

pairing the program compilation errors by learning the program

semantics through deep learning techniques. Formally, given a bro-

ken program 𝑝 from a dataset𝐷 (i.e., 𝑝 ∈ 𝐷), where 𝑝 = (𝑙1, 𝑙2, ..., 𝑙𝑛),
𝑛 is the total number of lines in 𝑝 . Its diagnostic feedback provided

by a compiler is defined as a list of (𝑖err,𝑚err),where 𝑖err is the

reported line number, and𝑚err is the error message. Since the line

number in the diagnostic feedback may not match the line of the

root cause in a broken program (shown in Figure 1), the goal of

TransRepair is to learn a function 𝑓 from the dataset 𝐷 that takes

(𝑝, 𝑖err,𝑚err) as input and identifies the location 𝑘 of the erroneous

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

Stack
Overflow

DeepFix

Broken
code

Perturbation
strategies

Correct
code

Compiler

Context
analyzer

Transformer
Encoder

Pointer
Decoder

MLP

Repaired
statement

……

l1 c1 merrCorrupted
dataset

Error line
number

l2 c2 merr

ln cn merr

Data Synthesis Data Parsing

Diagnostic
feedback

Context

Broken
code

Model Architecture

TRACER

Figure 2: The overview of TransRepair
code 𝑙𝑘 where 𝑘 ∈ {1, ..., 𝑛}, and a repaired version of this statement

(i.e., 𝑙 ′
𝑘
). The formulation can be expressed as 𝑙 ′

𝑘
= 𝑓 (𝑝, 𝑖err,𝑚err).

2.2 Approach Overview
Figure 2 presents the overview of our approach and it consists of

three sequential modules–data synthesis, data parsing andmodel ar-

chitecture. In the data synthesis, we first empirically summarize the

common compilation errors from multiple error sources including

DeepFix, TRACER and a self-curated dataset from StackOverflow.

We further design a set of perturbation strategies based on the

summarized compilation errors to corrupt the correct programs

from DeepFix and construct a new high-quality dataset 𝐷 that is

in line with the real scenario. For each broken program 𝑝 in the

constructed dataset, we compile it to obtain the diagnostic feedback

(i.e., (𝑖err,𝑚err)) provided by the compiler. Furthermore, we design

a context analyzer to extract the context of each line of code to

facilitate learning the context by the model. We take each line 𝑙𝑖 ,

its context 𝑐𝑖 as well as the diagnostic feedback (𝑖err,𝑚err) as the
input of the Transformer encoder to learn vector representations.

We further apply a fully-connected feedforward network (MLP) to

locate the line with error, and a pointer-based Transformer decoder

to generate a repair for the error code.

3 DATA SYNTHESIS
In this section, we introduce our data synthesis module that aims

at corrupting the correct program by the summarized perturbation

strategies to construct a high-quality corrupted dataset in line with

the real scenario.

3.1 Taxonomy of Compilation Errors
High quality data (e.g., large number, good diversity and accu-

rate error triage) makes a model better learn the repair rules. The

study [50] summarizes common compilation errors for Java, C and

C++ programming languages from DeepDelta [38], DeepFix [19]

and SPoC [27] respectively. Then five types of errors are specified

as well as the corresponding corruption rules for broken code syn-

thesis. However, as we observe, there are more types of compilation

errors that appear in reality but not in the their datasets.

In this study, we construct our own dataset by manually analyz-

ing 6,971 erroneous programs in DeepFix and 21,994 programs in

TRACER. Furthermore, we conduct an intensive search in Stack-

Overflow to include more diverse errors. Specifically, to obtain a

collection of compilation errors, we retrieve the data on StackOver-

flow with the keywords “[syntax-error] [c]” or “[compile-error] [c]”

and get 200 questions ranked by “Highest score”
2
. All the programs

as well as their error messages in StackOverflow are enclosed into

our dataset.

Manual analysis. We recruited four experts, all of whom have

more than five years of programming experience, to analyze the col-

lected program errors from DeepFix, TRACER and StackOverflow.

First, we normalize the error messages by removing the specific

information such as identifier name and line number, and group

them with the same normalized messages into distinct clusters.

Then, we spend about six man months to identify the type of errors,

and whether an error message is accurate, for example, in revealing

the causes of code errors. Specifically, we divide these clusters into

four analysis tasks and assign one expert with two of them. Every

error message is analyzed by two experts for cross validation. If a

disagreement occurs, a third expert will be involved to make the

final decision.

The compiler usually conducts the syntax analysis and semantic

analysis to ensure the correction of a program. For example, the

mistakenly spell of reserved words can incur a syntax error and

using a variable without declaration produces a semantic error.

As aforementioned, we manually analyze the collected erroneous

programs and distill a list of 74 error patterns in total. As shown in

Table 1, we further cluster these patterns into five categories within

the syntax and semantic analysis phases. This taxonomy is built

mainly based on the principles of compiler [3] and the analysis

objects in each phase. In particular, a compiler will check whether

the program complies with the context-free grammar of C in syn-

tax analysis and produce syntax errors if failed. As observed in the

dataset, there are two types of errors-structure error and statement

error, significantly varying in influence scope and repair strategies.

Structure error defines the misuse or absence of delimiter(s) (e.g.,

“{”, “}”, “;”) in a statement or a block. It may propagate the influence

to the entire program when a brace, for example, is missing. On the

contrary, statement errors are caused due to the mistaken tokens

in labeled statement, expression statement, selection statement or

iteration statement, and the error influence is often confined in a

single line. For example, for a correct expression statement “a =

a + 1”, if “1” is missing, the expression becomes “a = a +”, which

can definitely cause an error with single-line influence. In semantic

analysis, the compiler will build the semantics for the constructs

of code as well as their relations in between. Therefore, errors are

identified specific to the concrete semantic analysis tasks, such as

scope resolution and type checking. Here we refine semantic errors

into three classes, namely “variable declaration”, “type mismatch”

2
The queried results are as of April, 2022.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

Table 1: The analysis of common compiler errors from DeepFix, TRACER and StackOverflow as well as the correspond program
perturbation operation, which consists of the operand to change and operations.

Error Type Statistics Operand Operation
DeepFix StackO. Trace Avg. ADD DEL REP

Syntax

structure (struct) 56.51% 14.00% 19.68% 21.28% punctuator ✓ ✓ ✓
statement (stmt) 69.40% 34.00% 69.04% 51.52% keywords/operator/variable type/name ✓ ✓ ✓

Semantic

variable declaration (decl) 52.85% 39.50% 20.88% 21.43% variable type/name ✓
type mismatch (tm) 2.95% 4.00% 2.87% 2.17% variable type/name ✓ ✓
identifier misuse (im) 2.61% 10.50% 5.47% 3.60% operator/variable name ✓ ✓

and “identifier misuse”. The “variable declaration” represents the

use before the variable is declared. The error of “type mismatch” de-

fines the mismatch of the type or the number of formal parameters

of a function. For example, given a function “𝑓 (𝑎, 𝑏)” that allows
the invocation with two arguments, however, it is fed with three

arguments, e.g., “𝑓 (𝑎, 𝑏, 𝑐)”, inducing such errors. As for “identifier

misuse”, for example, a variable is declared as an Integer, so that it

cannot be used as a pointer like “int a; a->t=0;”.

The statistics of these types of errors in the datasets of DeepFix,

StackOverflow and TRACER is also presented in Table 1. As a pro-

gram may have multiple types of compilation errors, the total ratio

of each dataset may exceed 100%. We observe that the distribution

of compilation errors are very different across the datasets. Gener-

ally, the structure, statement and variable declaration account for

the vast majority in the datasets.

3.2 Broken Code Synthesis
To prepare the broken programs with the aforementioned errors,

we devise a specific perturbation method to corrupt the correct pro-

grams fromDeepFix. The code corruption is conducted token-wised,

that is, we make changes to a certain code token to produce an error.

There are basically three operations in the course of perturbation–

ADD is to add one token; DELmeans to remove one token, and; REP

works as replacing a token with another one. As such, the synthesis

of broken code proceeds in the following steps.

Step 1.Given a program, we construct its abstract syntax tree (AST)

and identify all the tokens in code, as well as the type of tokens.

Step 2. Configure the corruption procedure by specifying the num-

ber of errors made to the code, and the type of errors. Here we

create at most five errors for each program, in order to enable the

repairer to be able to fix the code with multiple errors.

Step 3. Make the errors specified in the previous step. For each

error, we first conduct a global analysis of the target code, select

the candidate variable names or symbols for replacement accord-

ing to the corruption rules, and finally select one of them as the

operand. For example, to generate a “statement” error, we can take

the keyword, operator, variable type or name in AST as the operand,

and perform one of three operations (i.e., add, delete and replace).

Table 1 shows the details for perturbation strategies. Noted that,

when the operation type is REP, we will first find the tokens in the

context based on the specific error type, and then randomly select

one from them.

The following part presents how to corrupt programs to generate

specific errors.

• Structure, which randomly adds, deletes or replaces an punctu-

ator such as “,.;()[]” at the position of punctuator.

Correct Code Broken Code

{max = cnt;} {max = cnt;}}

if (temp < a[j]){ if temp < a[j]

temp = 2 * b temp = 2 b

return 0; 0;

int a, b, c; float int a, b, c;

int array[len] int array[len] = [0]

int array[3] = {1, 2, 3} int array[] = {1, 2, 3}

mt= maxtill(n) mt = maxtill()

s = sum(a, b) s = sum(a, *b)

x = a + i * w; a + i * w = x;

scanf(“%d”, &a); scanf(“%d”, &&a);

Structure

Statement

Variable

Declaration

Type mismatch

Identifier misuse

Figure 3: Examples of synthesized broken code

• Statement,which randomly adds, deletes or replaces a keyword/-

operator/variable type/variable name at any statement if it has

such features.

• Variable declaration, which adds a variable type or variable

name at the variable declaration/usage statement to corrupt a

program.

• Typemismatch,which randomly adds or deletes a variable type

or variable name in the argument list of the function invocation.

• Identifier misuse, which randomly adds or deletes an operator

or variable name at the declaration statement.

We present the perturbation strategies with some examples in Fig-

ure 3 for better illustration. For each correct program, we repeatedly

conduct the code synthesis procedure for 50 times to generate differ-

ent broken programs and construct a new dataset 𝐷 . Additionally,

compared with [50], our rules for perturbation are summarized

from multiple program sources, which are in line with the real-

world programming errors. All the above enables us to prepare a

better training set for program repair learning. As a consequence,

it makes the model to learn more diverse and comprehensive com-

pilation errors, and achieve better repair efficiency as shown in

Section 7.1.

4 DATA PARSING
Through Section 3, we can construct a new dataset 𝐷 , where the

program 𝑝 in this dataset (i.e., 𝑝 ∈ 𝐷) has some compilation errors.

In this section, we introduce the module of diagnostic feedback

extraction and the context extraction.

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

4.1 Extraction of Diagnostic Feedback
The previous works [1, 38, 50] have confirmed that the diagnostic

feedback could improve the localization and repair accuracy greatly.

Hence, we also incorporate it in TransRepair . Specifically, since a

broken program may consist of multiple errors, making it possible

for the compiler to return multiple error messages, we take into

account all these errors in the training phase. But in the course of

the validation phase, we perform an iterative process to repair each

error successively. In each iteration, we use the first error which

consists of the reported line number 𝑖err and the error message𝑚err

as [50]. Furthermore, we replace the function name, variable name

and self-defined struct with the identifier “_<funcN>_”, “_<varN>_”

and “_<typeN>_” for normalization, where N is the index to denote

Nth position. For example, given three variables “a”, “b” and “c” in

𝑚err, we replace them with “_<var1>_”, “_<var2>_” and “_<var3>_”

correspondingly.

The processed error message will be fed to the network as a part

of the input for the learning module. Normalization can greatly re-

duce the vocabulary size of the model and has proven to be effective

for software vulnerability detection [30, 53]. It is worth mentioning

that we retain the names of these identifiers in a mapping table and

will recover them after the repair is completed.

4.2 Context Analyzer
As shown in Figure 1, the context (line 11) of the error statement

(line 9) could reflect the variable “A” is a pointer rather than an

integer. However, existing works [1, 38, 50] usually ignore the

context of each statement in learning, which could provide valuable

information to program repair. We propose a context analyzer to

extract the context (i.e., 𝑐𝑖) of the statement (i.e., 𝑙𝑖) in a broken

program (i.e., 𝑝) and take it as part of the input for the enhancement.

The extraction procedure is presented in Algorithm 1. Specifi-

cally, we define the input as a program text 𝑝 and a list of dictio-

naries 𝐿, where each dictionary consists of one statement 𝑙𝑖 , the

empty lists of “vars_declare” and “vars_use” for 𝑙𝑖 and a dictionary

that stores the context for 𝑙𝑖 . The length of the list 𝐿 is equal to the

number of lines for a program 𝑝 . We first design a lexical analyzer

(i.e., function ANALYZER) to take 𝑝 as input and outputs three sets,

which are variable names (var_set), function names (func_set) and

type names (type_set) respectively. We analyze the token from the

union of these sets to obtain its attribute (declaration or usage) and

append it into a list of vars_declare and vars_use from line 2 to line

8. The function IS_DECLARE is designed by analyzing the token.

If it is a variable/function name or some types come before it, such

as “Integer” or “Float”, we believe this token is the declaration and

append it into vars_declare. Otherwise we append it to vars_use.

Similarly, if the token is a type name and followed by the “struct”

or “typedef”, we also append it to vars_declare. Otherwise, it is

appended to vars_use. Once we have the attribute of a token in the

statement, we then extract the context. On one hand, for a token in

the list of vars_use, we retrieve its nearest declaration statement

and construct a list of declaration statements about all tokens from

vars_use by the function GET_DECLARE_LINES. On the other

hand, for the declared token, we also retrieve its nearest usage

statement. Since the declared token is usually introduced by the

expression such as “int a = b”, where “a” is the declared token and

“b” is the usage token, we also retrieve the nearest usage statement

Algorithm 1: Context Analyzer
Input: p: program; L: List[

{

statement: string;

vars_declare: [];

vars_use: [];

context: {’declare’:[], ’use’:[]}

}

];

Output: L
1 var_set, func_set, type_set = analyzer(p)

2 foreach line ∈ L do
3 foreach token ∈ var_set ∪ func_set ∪ type_set do
4 if token ∈ line[’statement’] then
5 if is_declare(line, token) then
6 line[’vars_declare’].append(token)

7 else
8 line[’vars_use’].append(token)

9 foreach line ∈ L do
10 line[’context’][’declare’] = get_declare_lines(p,

line[’vars_use’])

11 line[’context’][’use’] = get_use_lines(p, line[’vars_declare’] ∪
line[’vars_use’])

Input Embedding

<BOS>

Encoder

ierr

MLP + softmax

Attention

Error Line number

l1 c1 merr lk ck merr ln cn merr… int

st

=

Attention
Distribution

×(1-Pgen)
×Pgen

Pvocab

Output Embedding

x

int

Context Vector

Localization

Encoder Pointer Decoder

=

x
Positional
Encoding

Encoder Encoder… Transformer Decoder layer

… … …

Figure 4: The model architecture of TransRepair.

for “b” and combine it with the usage statement of “a” to construct

a list of usage statements about all tokens from vars_declare by the

function GET_USE_LINES. Last, we concatenate the declare context

(line[‘context’][‘declare’]) and use context (line[‘context’][‘use’]).

We further remove the duplicate and sort them by the order of the

original program 𝑝 , then take it as the context 𝑐𝑖 for statement 𝑙𝑖 .

5 PROGRAM REPAIR
In this section, we introduce the model architecture of TransRepair ,

which is shown in Figure 4. It is based on the Transformer archi-

tecture and consists of three parts: Transformer-based encoder to

encode a broken program to obtain the vector representation of

each statement; a fully connected forward neural network (MLP) to

locate the broken line, and a pointer decoder to generate a correct

statement for fixing.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

5.1 Encoding Broken Programs
Through Section 4, we obtain the compiler feedback (𝑖𝑒𝑟𝑟 ,𝑚𝑒𝑟𝑟) of
the broken program 𝑝 and the context 𝑐𝑖 for each statement 𝑙𝑖 ∈ 𝑝 .

To learn the representations, we directly adopt the Transformer

encoder [46] for encoding. Specifically, for each statement 𝑙𝑖 with

its context 𝑐𝑖 and the error message𝑚𝑒𝑟𝑟 , we construct the input

𝑠𝑖 in a format of (<BOS>, 𝑙𝑖 , <sep>, 𝑐𝑖 , <sep>,𝑚𝑒𝑟𝑟 , <EOS>), and

feed it to the Transformer encoder to learn the input representation

𝑯 𝑖 ∈ R𝑚×𝑑
, where𝑚 is the total number of tokens for the input 𝑠𝑖

and 𝑑 is the dimension length. The calculation can be expressed as

follows:

𝑯 𝑖 = Encoder(𝑠𝑖) (1)

The network architecture of the encoder is almost the same with

Vaswani et al. [46], which is composed of a stack of 𝑁 identical

layers and each layer has two sub-layers (the multi-head attention

layer and the fully connected feed-forward network). The only

difference is the positional encoding. We follow DrRepair [50] to

add the positional encoding of the line offset with the reported line

with error, i.e., Δ𝑖 = 𝑖𝑒𝑟𝑟 − 𝑖 , to each token embedding in 𝑠𝑖 .

5.2 MLP for Localization
By the Transformer encoder in Section 5.1 for encoding, we obtain

each sequence representation 𝑯 𝑖 , where 𝑖 ∈ {1, 2, · · · , 𝑛} and 𝑛 is

the total lines of a broken program. To locate the line of the error

statement (i.e., 𝑘), we turn this localization problem into a classifi-

cation task. Specifically, we extract the vector of 𝑯 𝑖 at the symbol

“<BOS>” (i.e., position “0”) as the aggregated sequence vector 𝒉𝑖
to represent the sequence 𝑠𝑖 , which is similar to CodeBERT [14]

and use the softmax function with two fully connected layers to

determine whether each statement is erroneous or not according to

the predicted probability. The loss function L
loc

can be expressed

as follows:

L
loc

= −log exp(𝒉𝑘)∑𝑛
𝑖=1 exp(𝒉𝑖)

(2)

where 𝑘 is the location of the error line in the broken program 𝑝

and 𝑛 is the total number of lines of 𝑝 .

5.3 Pointer Decoder for Fixing
The localization module helps TransRepair to locate the error state-

ment in a broken program, we further add a decoder to generate a

fixed statement for repair. We adopt the transformer decoder and

further add pointer mechanism to copy tokens from the input se-

quence to overcome the out-of-vocabulary (OOV) issue and improve

the accuracy of fixing. Specifically, given the output representation

𝑯𝑘 ∈ R𝑚×𝑑
of the encoder for the broken statement (<BOS>, 𝑙𝑘 ,

<sep>, 𝑐𝑘 , <sep>,𝑚𝑒𝑟𝑟 , <EOS>), where𝑚 is the sequence length, at

each step 𝑡 , we utilize the Transformer decoder [46] to receive the

word embedding of the previous word and output the hidden states

𝒔𝑡 . Furthermore, to compute a probability distribution over the in-

put sequence to tell the decoder where to attain to generate the

next word, we compute the attention distribution between 𝒔𝑡 ∈ R𝑑
and 𝑯𝑘 ∈ R𝑚×𝑑

, which can be expressed as follows:

𝒂𝑡 = softmax(𝑯𝑘 𝒔𝑡√
𝑑

) (3)

where 𝒂𝑡 ∈ R𝑚 and 𝑑 is the dimension length. Then the attention

distribution is used to produce a weighted sum of the encoder

hidden states (i.e., the context vector):

𝒉∗𝑡 =
∑︁
𝑖

𝒂𝑡𝑖𝒉𝑖 (4)

where 𝒉𝑖 denotes 𝑖-th vector in 𝑯𝑘 . The context vector is con-

catenated with the decoder state 𝒔𝑡 and produce the vocabulary

distribution 𝑃
vocab

:

𝑃
vocab

= softmax(𝑽 ′(𝑽 [𝒔𝑡 ;𝒉∗𝑡] + 𝒃) + 𝒃 ′) (5)

However, Eq 5 could only produce the token from the vocabulary

set and the Out-of-vocabulary (OOV) issue, which means that the

token is in the input sequence but out of the vocabulary set due to

the limited vocabulary length, cannot handle. To address this limi-

tation, similar to See [40], we incorporate the pointer mechanism to

allow the network to copy words by pointing and generate words

from a fixed vocabulary. Specifically, the generation probability

𝑝gen ∈ [0, 1] for each step 𝑡 is calculated from the context vector

𝒉∗𝑡 , the decoder state 𝒔𝑡 and the decoder input 𝒙𝑡 :

𝑝gen = 𝜎 (𝒘𝑇
ℎ∗𝒉

∗
𝑡 +𝒘𝑇𝑠 𝒔𝑡 +𝒘𝑇𝑥 𝒙𝑡 + 𝑏ptr) (6)

where𝒘ℎ∗ ,𝒘𝑠 ,𝒘𝑥 and 𝑏ptr are learnable parameters and 𝜎 is the sig-

moid function. 𝑝gen is used to choose between generating a token

from vocabulary or copying directly from the input sequence. Over

an extended vocabulary set, that combining the original vocabu-

lary set with the tokens from the input sequence, the probability

distribution is expressed as follows:

𝑃 (𝑤) = 𝑝gen𝑃vocab (𝑤) + (1 − 𝑝gen)
∑︁

𝑖:𝑤𝑖=𝑤

𝒂𝒊
𝑡

(7)

The loss function for the fixing (i.e., Lgen) can be expressed as

follows:

Lgen = − 1

𝑇

𝑇∑︁
𝑡=0

log𝑃 (𝑤∗
𝑡) (8)

where 𝑤∗
𝑡 is the target word for timestep 𝑡 and 𝑇 is the length of

the whole sequence. During the training phase, we directly add the

loss values of the location model and the fixing model for training:

L = L
loc

+ Lgen (9)

6 EVALUATION SETUP
In this section, we first introduce the used datasets for different

approaches, then briefly introduce the selected state-of-the-art base-

lines for comparison and the metrics for evaluation. Finally, we

present the details about the model configuration of TransRepair .

We aim at answering the following research questions:

RQ1. What is the performance of TransRepair compared with cur-

rent existing state-of-the-art approaches?

RQ2. Is each component (i.e., diagnostic feedback, context and

pointer mechanism) in TransRepair effective to improve the

repair accuracy?

RQ3. Is each type of the perturbation strategies is beneficial for

constructing a more diverse dataset and helping the model

improve the performance?

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

RQ4. When TransRepair fails and when it works? An empirical

study for investigating the detailed repaired results compared

with the state-of-the-art.

6.1 Datasets
In the evaluation, we corrupt the correct programs (in total 37,415)

from DeepFix [19] and obtain a total number of 1,821,275 synthetic

programs for model training. We conduct a strict deduplication pro-

cess based on code text similarity[4] to remove the same samples

between the training data and testing data. To construct a validation

set, we randomly select 2000 samples from TRACER’s training set

(17,688 in total) for validation. We separately evaluate the perfor-

mance of the trained model on the testset of DeepFix, which has

6,971 broken programs without ground-truths, and TRACER that

contains 3,674 single-line error programs with the provided single-

line ground-truths for a comprehensive evaluation. The statistics of

the dataset are presented in Table 2. Since the broken programs in

the testset of DeepFix may contain errors in multiple lines, we apply

TransRepair iteratively until the program passes the compilation,

or the tries exceed the maximum limit of 5.

6.2 Baselines
DeepFix [19]. DeepFix firstly proposes to adopt the sequence-to-

sequence model for fixing programming errors and it concatenates

the line number with the line statement as the input for RNNs with

the attention mechanism to generate the error line number and the

fixed statement. It further designs an iterative strategy to fix multi-

ple errors in a program and the acceptance standard for one line

fixing is whether the updated program can yield less error messages

than the input program by the compiler. Furthermore, DeepFix also

releases a dataset that has been widely used for the evaluation in

the follow-up related works for repairing programming errors.

RLAssist [18]. RLAssist proposes a programming language cor-

rection framework based on reinforcement learning, which allows

an agent to mimic human actions for text navigation and editing.

Specifically, by a trained agent, it allows a set of navigation and

edit actions to fix a program. The experimental results proved its

superiority against Deepfix.

SampleFix [20]. SampleFix proposes a deep generative model to

automatically correct programming errors by learning a distribution

over potential fixes. A deep conditional variational autoencoder [42]

is used to sample the fixes for an erroneous program. Furthermore,

a novel regularizer is proposed to encourage the model to generate

diverse fixes. The experimental results on the DeepFix dataset have

confirmed the effectiveness of the proposed architecture.

MACER [10]. Since the source code of TRACER [2] is not public

and we utilize a follow-up workMacer from the same research team,

which has confirmed its superiority over TRACER and been made

public. Specifically, MACER conducts a code abstraction procedure

and formulates this problem as a classification task by predicting

the repaired type in a limited repair classes and applies the predicted

repairs at the predicted location. Then, it recovers code abstraction

and compiles the fixed program for evaluation. The performance on

the DeepFix dataset and TRACER dataset confirms the improvement

over TRACER.

DrRepair [50]. DrRepair incorporates the diagnostic feedback pro-

duced by the compiler for a broken program into a designed model

and obtains significant improvements against the previous works.

Specifically, DrRepair constructs a program-feedback graph to build

the relations between a broken program and the feedback. Then

model architecture consists of the bidirectional LSTMs [21] to learn

the statement dependencies and the graph attention network [47] to

capture the relations between program and feedback. Furthermore,

to construct a large scale dataset for pre-training, DrRepair pro-

poses a program corruption procedure to corrupt correct programs

from DeepFix. The extensive experimental results on the Deep-

Fix dataset and SPoC dataset prove that DrRepair could achieve

the state-of-the-art performance. In our paper, we compare our

approach with DrRepair and its alternative without pretrain (i.e.,

DrRepair w/o pretrain).

For DeepFix, RLAssist and SampleFix, we directly get the re-

ported values in their original papers. For MACER, we utilize the

official released model to test the performance on the TRACER

testset and DeepFix testset. For DrRepair and TransRepair , we sep-

arately train the model using the DrRepair-released dataset and

our constructed dataset. In addition, in terms of full repair met-

ric on the DeepFix testset, DrRepair sets the beam size to 50 to

generate 50 programs for a broken program to test whether this

broken program can be fixed. However, by our analysis, we find

that the time cost is heavy when setting beam size to 50 and it costs

nearly 5 hours for a complete generation process on the DeepFix

testset. Considering time and efficiency cost, we set beam size to 5

for DrRepair and TransRepair for fair comparison.

6.3 Metrics
We evaluate our approach against other baselines in the metrics of

single localize, single repair and full repair accuracy. Since TRACER’s

testset provides the ground-truths of single-line erroneous program

(i.e., each broken program has its correct counterpart), we could use

all these metrics for evaluation. However, we only utilize full repair

accuracy for the DeepFix testset since it is without ground-truths.

Single Localize. It defines the accuracy of localizing a single error

statement in a single-line error program in the TRACER testset.

Single Repair. It is used to evaluate if the generated statement is

exactly matched with the ground-truth associated with a broken

statement. In this setting, we assume that the error statement is

known and we do not need a localization module for localizing an

error statement. We use Acc@k to calculate the percentage of the

correct results existed in the top-k returned results. Specifically,

we adjust the beam search size equal to 𝑘 to return 𝑘 results for a

broken program and we set 𝑘 to 1, 5, 10 to evaluate the accuracy

of the generated statement in TRACER where each sample has a

ground-truth for calculation.

Full Repair. It is designed to evaluate the ability of different ap-

proaches on fixing a broken program, which consists of localizing

an error statement and further fixing it. Furthermore, it is calcu-

lated in the percentage of the generated program that could pass

the compiler in success. We utilize full repair accuracy in both the

TRACER testset and DeepFix testset for evaluation.

It is noted that the metric “Full Repair” may have limits for

evaluation considering the scenarios when the erroneous lines are

simply removed rather than correctly edited. It is used here because:

1) the Deepfix dataset has no ground-truths, so we resort to full

repair to evaluate the repair performance. Meanwhile, we avoided

deleting the entire line which may incur dramatic changes to code

semantics. 2) These metrics have also been widely used in [2, 10, 50],

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

Table 2: The statistics of the constructed dataset.

Correct Programs Training set Validation set Test set
struct stmt decl tm im Total TRACER DeepFix

37,415 461,663 778,210 261,944 274,366 45,074 1,821,275 2,000 3,674 6,971

Table 3: The experimental results compared with the baselines where the reported values are in percentages and the values with
the marker ∗ denote these values are taken from the corresponding papers directly and the marker - denotes the unreported
metrics on the specific testset.

Model
TRACER Testset DeepFix Testset

Single Localize Single Repair Full Repair Full RepairAcc@1 Acc@5 Acc@10
DeepFix - - - - - 27.00*

RLAssist - - - - - 26.60*

SampleFix - - - - - 45.30*

MACER 31.57 10.34 16.55 38.32 26.08 56.40

DrRepair_ori 84.98 46.24 57.73 60.13 72.66 62.13

DrRepair 86.72 48.56 60.23 62.28 77.11 63.87

TransRepair_ori 80.19 44.47 58.57 63.39 78.77 66.71

TransRepair 83.21 49.65 61.27 65.08 82.81 68.53

with which we can compare with prior studies directly. But we will

explore more better metrics in future.

6.4 Model Configuration
TransRepair consists of 5 identical layers for the Transformer en-

coder and decoder, each layer has 8 heads to learn different subspace

features. We select the tokens with the frequency greater than 1

in the training set for constructing our vocabulary set. The word

dimension is set to 256 with the positional encoding equals to 50

for the embedding. The optimizer is selected with Adam [26] with

an initial learning rate of 0.0001 and batch size of 25. We set the

dropout to 0.1 and gradient clipping to 10. All hyper-parameters

are tuned on the validation set. The model is trained on a Intel(R)

Xeon(R) server with 8 cores, which equips Nvidia 3090 with 24G

memory and 2 Nvidia TITAN X with 12G memory and the training

process costs around 30 hours.

7 EVALUATION RESULTS
In this sections, we present the experimental results in light of

research questions.

7.1 RQ1: Comparisons with Baselines
We compare TransRepair with some existing approaches, specifi-

cally the row of “{∗}_ori” indicates the model {∗} trained on the

original training set that DrRepair released. The experimental re-

sults are presented in Table 3.

Among different baselines, we find that DrRepair could achieve

the best performance on both TRACER and DeepFix testset, which

is in line with the perception that DrRepair is current state-of-the-

art approach for repairing program syntax errors. Furthermore,

we can observe that TransRepair could obtain higher single repair

and full repair accuracy than DrRepair when fixing a training set

to train (i.e., the original training set that DrRepair uses or our

corrupted training set), which illustrates the superiority of our

approach in program repair against DrRepair. However, we also

find that the accuracy of single localize of TransRepair is lower than

DrRepair on the TRACER testset, we conjecture that it is caused by

the localization requires the exact match to the error line, which

is harder for TransRepair (Transformer-based) to achieve higher

performance compared with DrRepair (LSTM-based). However,

the requirement for generating a statement to replace the error

statement to pass the compilation is relatively easier for TransRepair

since the Transformer is more powerful than LSTMs in generating

a target sequence even in adverse condition when Transformer has

poor ability to accurately localize an error statement. The more

powerful generation ability of transformer can be further enhanced

by comparing the results of TransRepair and DrRepair on the single

repair accuracy and this metric is used to evaluate the generated

statement is exactly matched with the ground-truth when taking

an error statement as the input for the decoder. We can observe that

TransRepair achieves higher single repair accuracy than DrRepair.

Hence, the poor localize accuracy may not significantly impact the

repair accuracy in our model and we believe that the metric of

repair accuracy plays a critical role for program repair. But we also

want to investigate the way to improve our localization accuracy

and we leave it as our future work.

In addition, fixing a model (e.g., DrRepair or TransRepair), we

use our constructed training set or the original training set that

DrRepair used for training separately. We could achieve higher

repair accuracy on our training set than the original training set

that used by DrRepair. It proves that by our designed perturbation

strategies, we can construct a training set that is more in line with

the real scenario and this dataset could help the model achieve a

better performance.

In summary: TransRepair provides higher repair accuracy com-

pared with the state-of-the-art approach DrRepair. We attribute

the improvements to the powerful generation ability of the Trans-

former. Furthermore, by comparing the performance among the

training sets that DrRepair used and we constructed, we further

confirm that our training set is better for the model to achieve

higher performance.

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 4: The ablation results of TransRepair, where w/o de-
notes the removed component.

Model TRACER Testset
Acc@1 Acc@5 Acc@10

w/o feedback 45.67 58.74 62.38

w/o context 47.09 59.93 64.07

w/o pointer 47.00 60.86 64.78

TransRepair 49.65 61.27 65.08

Table 5: The ablation results by removing one type of pertur-
bation strategies to construct the training set for learning.

Model TRACER Testset
Acc@1 Acc@5 Acc@10

w/o struct 48.06 60.51 64.43

w/o stmt 47.23 59.56 62.66

w/o decl 46.57 58.49 62.40

w/o tm 47.88 59.51 63.37

w/o im 47.35 59.73 63.06

TransRepair 49.65 61.27 65.08

7.2 RQ2: Ablation study of each component in
the network architecture

We ablate the performance of TransRepair when removing the

specific component in the model architecture and maintaining the

others for evaluation. The experimental results on TRACER in

terms of single repair accuracy are presented in Table 4, where

w/o denotes the removed component in TransRepair and the model

configuration is the same as TransRepair for fair comparison.

As shown in Table 4, we can find that the diagnostic feedback

plays a critical role in improving the performance and removing it

degrades the accuracy significantly. This shows that the diagnostic

feedback could supplement some valuable information such as the

error line and error message, although in many cases, this infor-

mation may be inaccurate, it could still contribute the model to

achieve higher accuracy when incorporating this part of informa-

tion. Furthermore, we can observe that the context is also important

in improving the performance. Since the context of a statement

could reduce the difficulty for the model to learn this statement

semantics (See an example in Figure 1, ignoring the context will

limit the repair accuracy. The pointer mechanism could effectively

alleviate the out-of-vocabulary issue and without it. The repair

accuracy drops from 65.08 to 64.78, which demonstrates that there

are some target tokens might be out of vocabulary set. Hence, we

incorporate the pointer mechanism into the Transformer decoder

can mitigate this issue and further improve the performance. Over-

all, from Table 4, we can conclude that when combing all of these

components, TransRepair could achieve the best repair accuracy.

In summary: The diagnostic feedback plays a critical role in im-

proving the repair accuracy, however the contextual information

and the pointer mechanism is also beneficial for the improvement

and when incorporating all of components, TransRepair could

achieve the best performance.

7.3 RQ3: Ablation study of perturbation
strategies in dataset construction

In Section 3, we design a set of 5 perturbation strategies and sample

1-5 strategies to corrupt a correct program and construct a training

set for TransRepair to learn. In this RQ, we also investigate the

effect of each perturbation strategy in building the training set.

Specifically, we remove one type of perturbation strategies and

maintain the others to build a new training set where the total

number of samples in this training set is equal to the original one.

Then we train our model on the newly constructed training set

with the same model configuration as the original to compare the

performance, and the experimental results are presented in Table 5.

We can see that each perturbation strategy is effective in con-

structing a more diverse training set. When combing all to build a

training set, we could achieve the best performance. Specifically,

when the training set is constructed without the structure strategy

(i.e., the training set has no samples with the type of structure er-

ror) has the lowest drop in repair accuracy compared with other

strategies. It depicts that the structure error type has the least con-

tributions in constructing a diverse training set to help the model

obtain higher repair accuracy. We infer that it is caused by the

difficulty in fixing this type of errors. The defined operations only

modify punctuators such as “{”, “}” in a correct program and these

punctuators have no semantic information for a program com-

pared with other types of corrupted operations in Table 1, which

involves modifying the variable names to synthesize other error

types. Hence, the model is difficult to learn effective patters for

structure errors and removing this type of data in the training set

cannot lead the model have a significant impact on the repair ac-

curacy. Furthermore, we can see that removing the data that have

the “variable declaration (decl)” errors in the training set, the repair

accuracy decreases significantly and it demonstrates that adding

samples with this type of error could be beneficial for the model

learning. We believe that the improvement is due to the designed

context analyzer (see Section 4.2), which could extract the contex-

tual information for these variables and it is significantly beneficial

for the model to learn effective repair patterns.

In summary: Each type of perturbation strategies is beneficial in

constructing a diverse training set. When combining them together

and apply them to corrupt correct programs for building the training

set, we could obtain the best repair accuracy.

7.4 RQ4: When TransRepair fails and when it
works?

We conduct a statistical analysis further to compare the repaired

results between TransRepair and DrRepair. Both models are trained

on our constructed dataset and tested on the TRACER testset to

verify model’s ability to fix different types of program errors. The

statistical results are presented in Figure 5, where the number be-

sides the rectangle is the total number of fixes and the ratio of the

number of fixes to the total number of this type errors. More details

on the repair efficacy for each concrete error pattern can be found

on our website [28].

As illustrated in Figure 5, we find that TransRepair is excellent

in fixing the errors of “variable declaration (decl)” and “type mis-

match (tm)” and has a slight improvement in fixing the errors of

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

struct stmt decl tm im
Error Type

0

500

1000

1500

2000

Sa
m

pl
es

600/80.32%

1690/88.76%

543/76.26%

66/70.21%
144/66.36%

589/78.85%

1667/87.55%

387/54.35%

41/43.62%
149/68.66%

dataset
DrRepair
TransRepair

Figure 5: The comparison results for the number of repairs
between DrRepair and TransRepair.

“structure (struct)” and “statement (stmt)” while is slightly inferior

to fix the error of “identifier misuse (im)” compared with DrRepair.

We conjecture that DrRepair could fix more “identifier misuse (im)”

errors due to the constructed program feedback graph to capture

the variable relations. However, we can also get a competitive per-

formance by the powerful Transformer without the need of the

constructed graph. For the other four errors that TransRepair could

fix better than DrRepair, we attribute the improvement to the used

context in helping the model capture the error statement patterns.

Especially for the error type of variable declaration, the context

information around the error statement is critical to reveal the root

cause. Here we present one example with the generated results

by TransRepair and DrRepair in Figure 6 for better illustration. It

shows that the error is due to the variable “n” is not defined at line

5 and its contexts are highlighted in blue at line 3 and line 6. We

encode the context (i.e., line 3 and line 6) for this error statement

could help TransRepair generate a correct statement “for (i = 1 ;

i <= N ; i ++) {” for the fixing, while due the lack of the context,

DrRepair fails to generate a correct statement to repair this error.

In summary: Generally, TransRepair is competitive in fixing the

type mismatch error compared with DrRepair, however on other

four errors, it could achieve better performance, we attribute the

improvement to the utilized context for learning.

8 THREATS TO VALIDITY
Internal validity. One of the threats to validity is the hyper-

parameter setting for our approach. We tune our model on the

validation set and select the best model based on the repair accu-

racy and use it for testing. We will explore more hyper-parameters

for our approach. Another threat lies in our implementations of the

broken code synthesis, context analyzer and model implementation.

To reduce this threat, the authors carefully check the correctness

of the implementation. We will make our code and the constructed

dataset public for further investigation.

External validity. The external threats to validity include the se-

lected datasets, the evaluation of the baselines and the evaluation

metrics. In terms of dataset, the training set is constructed from

the DeepFix dataset, which is a popular C programming language

dataset for program repairing. We only use three operations (i.e.,

ADD, DEL and REP) as the building blocks for code mutation. It

is intriguing to explore more complex transformation strategies

such as multiple operations with logical relations. Furthermore,

1 Broken Code:
2 int main () {
3 int N , i , j , k , sum = 0 ;
4 scanf (" %d " , & N) ;
5 for (i = 1 ; i <= n ; i ++) {
6 for (j = 1 ; j <= i ; j ++) {
7 if (k >= 0)
8 k = i - j + 1 ;
9 sum = sum + 1 ;
10 }
11 printf (" Number of possible triangles is

%d, sum) ;↩→
12 return 0 ;
13 }
14 }
15 DrRepair: int N , i , j , k , sum = 0 ;
16 TransRepir: for (i = 1 ; i <= N ; i ++) {

Figure 6: The broken program with the generated statement
by DrRepair and TransRepair for fixing.

we select two testsets (i.e., TRACER and DeepFix) and they are

both on C language for evaluation. We admit that there are some

works [38] for other languages like Java but TransRepair cannot be

directly used for these languages. We will extend our approach with

adaptive language analyzers for other languages in future. Addition-

ally, programs in a more complex system may encounter varying

compilation errors considering dependent libraries, templates and

generics. Therefore, it may degrade the repair performance of Tran-

sRepair, which can be to some extent mitigated by involving more

complex programs during the training. Our approach remains ef-

fective for AI programming such as automated code completion,

we can use our approach to repair the generated programs by AI

models. In terms of baselines, for DeepFix, RLAssist and SampleFix,

we report the values from the original paper and we believe these

reported values are the best for their approaches. For MACER, we

also believe the released model is the optimal and for DrRepair, we

only adjust the beam search size to 5 and keep the other settings

same with the default configuration for reproduction. The default

hyper-parameters of DrRepair on our constructed dataset may not

be optimal, however on its original dataset that DrRepair uses (the

configuration should be optimal), our experiments prove that our

approach outperforms it significantly (see Table 3). As for evalua-

tion metrics, we follow DrRepair [50] and utilize the single localize

accuracy, single repair accuracy (Acc@1 in our work), full repair

accuracy for evaluation. We further add Acc@5 and Acc@10 for a

comprehensive evaluation.

9 RELATEDWORK
There is a line of works on automated program repair for compi-

lation errors and context-aware program repair. We also briefly

introduce some works that use deep learning techniques for differ-

ent software engineering applications.

9.1 Automated Compilation Error Repair
Over the past years, automated program repairs for compilation

errors have attracted widespread attention. DeepFix [19] applied a

RNN-based encoder-decoder framework to repair program syntax

errors on C programming language. RLAssist [18] is a follow-up

work after the DeepFix. It attempted to use deep reinforcement

learning to achieve better repair accuracy. TRACER [2] also adopted

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

RNN-based model to repair the syntax errors and the follow-up

work MACER [10] formulated this problem as a classification task.

Hajipour et al. proposed SampleFix [20], which applied a deep gen-

erativemodel to fix programming errors automatically. These works

just utilize the program for the repair, while some external infor-

mation such as the diagnostic feedback is ignored. To supplement

this part of information, SynFix [1] proposed to incorporate the

compiler diagnostics from JavaC with the pre-trained RoBERTa for

improvement. Yasunaga et al. proposed DrRepair [50], which con-

structed a graph between the diagnostic feedback and the broken

program and took them as the input of a self-supervised learning

framework to repair the errors. Compared with these works, we

craft high-quality training data that is in line with the real scenario

and made this well-designed dataset public for further studies. Fur-

thermore, we propose a Transformer-based program repair model

with pointer mechanism, which incorporates the broken program

and the context and diagnostic feedback to improve repair accuracy.

9.2 Context-Aware Program Program Repair
Because of the complexity of a broken program, it is hard to accu-

rately capture the program semantics. More researchers attempt

to utilize the context as the auxiliary information to enhance the

fault localization and program repair for logic errors. Specifically,

Chilimbi et al. [11] proposed a static analysis approach, namely

HOLMES, which determines the root causes of targeted bugs based

on the run-time profiling information representing program con-

text. Wen et al. [48] proposed a context-aware patch generation

approach called CapGen, which leverage several novel prioritiza-

tionmethods to enhance the success rate of automatically generated

patch for repair. Li et al. [29] proposed a context-based code trans-

formation learning approach, namely DLFix, which applied deep

learning on automated program repair (APR) without requiring

ant hard-coding of bug-fixing patterns. Lutellier et al. [37] pro-

posed a combined neural machine translation (NMT) models based

context-aware approach, called CoCoNut, which could work on

automatic bug repair in multiple programming languages. Kim et

al. [25] proposed ConFix, which is an context-based automatic patch

generation approach for buggy programs. Chen et al. [8]proposed

a sequence-to-sequence based tool, namely SequenceR, to repair

buggy programs by learning from the buggy context of single line

repair from human commits. The main difference between it and

ours is that we are focusing on compilation errors other than logic

bugs. Inspired by above works, in TransRepair , we also incorporate

context of the error statement for fixing compilation errors.

9.3 Deep Neural Networks for SE Applications
With the rapid development of AI techniques, more researchers at-

tempt to utilize deep learning techniques for software engineering

applications. Compared with traditional software analysis tech-

niques, deep learning techniques aim at learning features automati-

cally from a large amount of data. By training a deep neural network

and deploying it to the test phase, the superior performance of these

models has been confirmed on different applications. For example,

Allamanis et al. [5] proposed to construct the program graph and

utilized it with Gated Graph Neural Network to learn program

semantics for variable misuse detection. Followed by this work,

many other works proposed to extract program structures for other

applications such as source code vulnerability detection [9, 51],

code summarization [15, 33], deep code search [32, 36],neural pro-

gram decompilation [31]. An empirical study [41] is also conducted

to illustrate different program structures to the effect of software

engineering applications. Recently, more pre-trained models are

proposed to learn general code fragment representation for “code

intelligence” such as CodeBERT [14] and GraphCodeBERT [17]. A

BART-based pre-trained model CommitBART [35] is also proposed

for different commit-related applications such as commit message

generation [23, 34], security patch identification [49, 52].

10 CONCLUSION
We develop a Transformer-based approach TransRepair to automat-

ically fix compilation errors in C programs. To craft high quality

training data, we spend around 2-man months investigating the

compilation errors from 28,965 erroneous programs from two pub-

lic datasets and the Internet, and then distill 74 error patterns that

fall into 5 classes. A data synthesis approach is devised by cor-

rupting correct programs into these errors and finally we obtain

1,821,275 erroneous programs of high diversity. TransRepair is built

on top of Transformer that takes as input the broken program, to-

gether with its context and the diagnostic feedback. It integrates

the pointer mechanism to address the out-of-vocabulary code to-

kens and outputs the localization of the error statement and fur-

ther provides a fixed version. The extensive experiments on two

open-source testsets have proved that TransRepair outperforms the

current state-of-the-art both in repair accuracy.

11 ACKNOWLEDGMENT
We would thank the anonymous reviewers for their valuable com-

ments. IIE authors are supported in part byNSFC (61902395, U1836211),

Beijing Natural Science Foundation (No.M22004), the Anhui De-

partment of Science and Technology under Grant 202103a05020009,

Youth Innovation Promotion Association CAS, Beijing Academy

of Artificial Intelligence (BAAI). This research is also partially sup-

ported by the National Research Foundation, Singapore under its

the AI Singapore Programme (AISG2-RP-2020-019), the National

Research Foundation, Prime Ministers Office, Singapore under its

National Cybersecurity R&D Program (Award No. NRF2018NCR-

NCR005-0001), NRF Investigatorship NRF-NRFI06-2020-0001, the

National Research Foundation through its National Satellite of

Excellence in Trustworthy Software Systems (NSOE-TSS) project

under the National Cybersecurity R&D (NCR) Grant award no.

NRF2018NCR-NSOE003-0001, the Ministry of Education, Singapore

under its Academic Research Tier 3 (MOET32020-0004). Any opin-

ions, findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not reflect the views

of the Ministry of Education, Singapore.

REFERENCES
[1] Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. 2021. SYNFIX:

Automatically Fixing Syntax Errors using Compiler Diagnostics. arXiv preprint

arXiv:2104.14671 (2021).

[2] Umair Z Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit

Gulwani. 2018. Compilation error repair: for the student programs, from the

student programs. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering Education and Training. 78–87.

[3] Alfred V. Aho and Jeffrey D. Ullman. 1977. Principles of Compiler Design (1 ed.).

Addison-Wesley Professional.

[4] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine

learning models of code. In Proceedings of the 2019 ACM SIGPLAN International

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu

Symposium on New Ideas, New Paradigms, and Reflections on Programming and

Software. 143–153.

[5] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning

to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[6] Sahil Bhatia and Rishabh Singh. 2016. Automated correction for syntax errors

in programming assignments using recurrent neural networks. arXiv preprint

arXiv:1603.06129 (2016).

[7] Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn Song. 2021. PlotCoder:

Hierarchical Decoding for Synthesizing Visualization Code in Programmatic

Context. In Proceedings of the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Conference on Natural Language

Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,

2021. Association for Computational Linguistics, 2169–2181.

[8] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,

Denys Poshyvanyk, and Martin Monperrus. 2019. SEQUENCER: Sequence-to-

Sequence Learning for End-to-End Program Repair. IEEE Transactions on Software

Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2940179

[9] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. Deepwukong:

Statically detecting software vulnerabilities using deep graph neural network.

ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),

1–33.

[10] Darshak Chhatbar, Umair Z Ahmed, and Purushottam Kar. 2020. Macer: A

modular framework for accelerated compilation error repair. In International

Conference on Artificial Intelligence in Education. Springer, 106–117.

[11] Trishul M. Chilimbi, Ben Liblit, KrishnaMehra, Aditya V. Nori, and Kapil Vaswani.

2009. HOLMES: Effective statistical debugging via efficient path profiling. In

2009 IEEE 31st International Conference on Software Engineering.

[12] GitHub Copilot. 2022. Your AI pair programmer. https://copilot.github.com/.

[13] Paul Denny, Andrew Luxton-Reilly, and Ewan D. Tempero. 2012. All syntax

errors are not equal. In Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE ’12, Haifa, Israel, July 3-5, 2012, Tami Lapidot,

Judith Gal-Ezer, Michael E. Caspersen, and Orit Hazzan (Eds.). ACM, 75–80.

https://doi.org/10.1145/2325296.2325318

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained

model for programming and natural languages. arXiv preprint arXiv:2002.08155

(2020).

[15] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2018. Structured

neural summarization. arXiv preprint arXiv:1811.01824 (2018).

[16] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz

Koushanfar, and Jishen Zhao. 2019. Coda: An End-to-End Neural Program

Decompiler. In Advances in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December

8-14, 2019, Vancouver, BC, Canada. 3703–3714.

[17] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:

Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366

(2020).

[18] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Deep reinforcement

learning for syntactic error repair in student programs. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 33. 930–937.

[19] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fix-

ing common c language errors by deep learning. In Thirty-First AAAI Conference

on Artificial Intelligence.

[20] Hossein Hajipour, Apratim Bhattacharyya, Cristian-Alexandru Staicu, and Mario

Fritz. 2021. SampleFix: learning to correct programs by sampling diverse fixes.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 119–133.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[22] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Ma-

chine Translation for Automatic Program Repair. In 43rd IEEE/ACM International

Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.

IEEE, 1161–1173. https://doi.org/10.1109/ICSE43902.2021.00107

[23] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-

ing commit messages from diffs using neural machine translation. In 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 135–146.

[24] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran Yahav. 2019. Towards

Neural Decompilation. CoRR abs/1905.08325 (2019). arXiv:1905.08325 http:

//arxiv.org/abs/1905.08325

[25] Jindae Kim, Jeongho Kim, Eunseok Lee, and Sunghun Kim. 2020. The effectiveness

of context-based change application on automatic program repair. Empirical

Softw. Engg. (2020).

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex

Aiken, and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. Advances

in Neural Information Processing Systems 32 (2019).

[28] Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen,

and Yang Liu. 2022. TransRepair: Context-Aware Program Repair for Compilation

Errors. https://sites.google.com/view/transrepair/.

[29] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-based Code

Transformation Learning for Automated Program Repair. In 2020 IEEE/ACM 42nd

International Conference on Software Engineering (ICSE).

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun

Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for

vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[31] Ruigang Liang, Ying Cao, Peiwei Hu, and Kai Chen. 2021. Neutron: an attention-

based neural decompiler. Cybersecurity 4, 1 (2021), 1–13.

[32] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu,

Alex X Liu, Chunming Wu, and Shouling Ji. 2021. Deep graph matching and

searching for semantic code retrieval. ACM Transactions on Knowledge Discovery

from Data (TKDD) 15, 5 (2021), 1–21.

[33] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2020. Retrieval-

Augmented Generation for Code Summarization via Hybrid GNN. In International

Conference on Learning Representations.

[34] Shangqing Liu, Cuiyun Gao, Sen Chen, Nie Lun Yiu, and Yang Liu. 2020. ATOM:

Commit message generation based on abstract syntax tree and hybrid ranking.

IEEE Transactions on Software Engineering (2020).

[35] Shangqing Liu, Yanzhou Li, and Yang Liu. 2022. CommitBART: A Large Pre-

trained Model for GitHub Commits. arXiv preprint arXiv:2208.08100 (2022).

[36] Shangqing Liu, Xiaofei Xie, Lei Ma, Jingkai Siow, and Yang Liu. 2021. Graph-

searchnet: Enhancing gnns via capturing global dependency for semantic code

search. arXiv preprint arXiv:2111.02671 (2021).

[37] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and

Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models

using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis.

[38] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.

2019. Deepdelta: learning to repair compilation errors. In Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 925–936.

[39] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,

and José Nelson Amaral. 2018. Syntax and sensibility: Using language models to

detect and correct syntax errors. In 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER). IEEE, 311–322.

[40] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:

Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368

(2017).

[41] Jing Kai Siow, Shangqing Liu, Xiaofei Xie, Guozhu Meng, and Yang Liu. 2022.

Learning Program Semantics with Code Representations: An Empirical Study.

arXiv preprint arXiv:2203.11790 (2022).

[42] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output

representation using deep conditional generative models. Advances in neural

information processing systems 28 (2015).

[43] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance

of Building High-quality Training Datasets for Neural Code Search. CoRR

abs/2202.06649 (2022). arXiv:2202.06649 https://arxiv.org/abs/2202.06649

[44] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What

They Mean. Adv. Hum. Comput. Interact. 2010 (2010), 602570:1–602570:26. https:

//doi.org/10.1155/2010/602570

[45] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.

Experience: Evaluating the Usability of Code Generation Tools Powered by Large

Language Models. In CHI ’22: CHI Conference on Human Factors in Computing

Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022, Extended Abstracts,

Simone D. J. Barbosa, Cliff Lampe, Caroline Appert, and David A. Shamma (Eds.).

ACM, 332:1–332:7.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint

arXiv:1710.10903 (2017).

[48] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-Aware Patch Generation for Better Automated Program Repair. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE).

[49] Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, and Shang-Wei

Lin. 2022. Enhancing Security Patch Identification by Capturing Structures in

Commits. IEEE Transactions on Dependable and Secure Computing (2022).

[50] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program

repair from diagnostic feedback. In International Conference on Machine Learning.

PMLR, 10799–10808.

[51] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.

Devign: Effective vulnerability identification by learning comprehensive program

semantics via graph neural networks. InAdvances in Neural Information Processing

https://doi.org/10.1109/TSE.2019.2940179
https://copilot.github.com/
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1109/ICSE43902.2021.00107
https://arxiv.org/abs/1905.08325
http://arxiv.org/abs/1905.08325
http://arxiv.org/abs/1905.08325
https://sites.google.com/view/transrepair/
https://arxiv.org/abs/2202.06649
https://arxiv.org/abs/2202.06649
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570

TransRepair : Context-aware Program Repair for Compilation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

Systems. 10197–10207.

[52] Yaqin Zhou, Jing Kai Siow, ChenyuWang, Shangqing Liu, and Yang Liu. 2021. SPI:

Automated Identification of Security Patches via Commits. ACM Transactions on

Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1–27.

[53] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019. 𝜇 VulDeeP-

ecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.

IEEE Transactions on Dependable and Secure Computing 18, 5 (2019), 2224–2236.

	Abstract
	1 Introduction
	2 System Overview
	2.1 Problem Formulation
	2.2 Approach Overview

	3 Data Synthesis
	3.1 Taxonomy of Compilation Errors
	3.2 Broken Code Synthesis

	4 Data Parsing
	4.1 Extraction of Diagnostic Feedback
	4.2 Context Analyzer

	5 Program Repair
	5.1 Encoding Broken Programs
	5.2 MLP for Localization
	5.3 Pointer Decoder for Fixing

	6 Evaluation Setup
	6.1 Datasets
	6.2 Baselines
	6.3 Metrics
	6.4 Model Configuration

	7 Evaluation Results
	7.1 RQ1: Comparisons with Baselines
	7.2 RQ2: Ablation study of each component in the network architecture
	7.3 RQ3: Ablation study of perturbation strategies in dataset construction
	7.4 RQ4: When TransRepair fails and when it works?

	8 Threats to validity
	9 Related Work
	9.1 Automated Compilation Error Repair
	9.2 Context-Aware Program Program Repair
	9.3 Deep Neural Networks for SE Applications

	10 Conclusion
	11 acknowledgment
	References

