
1

Collaborative Security: A Survey and Taxonomy

GUOZHU MENG, YANG LIU, and JIE ZHANG, Nanyang Technological University, Singapore
ALEXANDER POKLUDA and RAOUF BOUTABA, University of Waterloo, Canada

Security is oftentimes centrally managed. An alternative trend of using collaboration in order to improve
security has gained momentum over the past few years. Collaborative security is an abstract concept that
applies to a wide variety of systems and has been used to solve security issues inherent in distributed
environments. Thus far, collaboration has been used in many domains such as intrusion detection, spam
filtering, botnet resistance, and vulnerability detection. In this survey, we focus on different mechanisms
of collaboration and defense in collaborative security. We systematically investigate numerous use cases of
collaborative security by covering six types of security systems. Aspects of these systems are thoroughly
studied, including their technologies, standards, frameworks, strengths and weaknesses. We then present
a comprehensive study with respect to their analysis target, timeliness of analysis, architecture, network
infrastructure, initiative, shared information and interoperability. We highlight five important topics in col-
laborative security, and identify challenges and possible directions for future research. Our work contributes
the following to the existing research on collaborative security with the goal of helping to make collabora-
tive security systems more resilient and efficient. This study (1) clarifies the scope of collaborative security,
(2) identifies the essential components of collaborative security, (3) analyzes the multiple mechanisms of
collaborative security, and (4) identifies challenges in the design of collaborative security.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security
and protection; D.4.6 [Operating Systems]: Security and Protection—Invasive software; H.5.3 [Informa-
tion Interfaces and Presentation]: Group and Organization Interfaces—Collaborative computing

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Collaborative security, taxonomy, privacy, trust, intrusion detection,
spam, malware, information sharing

ACM Reference Format:
Guozhu Meng, Yang Liu, Jie Zhang, Alexander Pokluda, and Raouf Boutaba. 2015. Collaborative security:
A survey and taxonomy. ACM Comput. Surv. 48, 1, Article 1 (July 2015), 42 pages.
DOI: http://dx.doi.org/10.1145/2785733

1. INTRODUCTION

In the last several years, cybersecurity attacks have increased the risk of property loss,
privacy leakage, and a general disruption of daily life. Targeted attacks are consis-
tently increasing year after year, with increases of 42% and 81% over the last 2 years,

This research is supported (in part) by the National Research Foundation, Prime Minister’s Office, Singapore
under its National Cybersecurity R & D Program (Award No. NRF2014NCR-NCR001-30) and administered
by the National Cybersecurity R & D Directorate. This research is also partially supported by “Formal
Verification on Cloud” project under Grant No: M4081155.020. This work is also partially supported by the
A*STAR SERC grant (1224104047) awarded to Dr. Jie Zhang.
Authors’ addresses: G. Meng; email: gzmeng@ntu.edu.sg; Y. Liu; email: yangliu@ntu.edu.sg; J. Zhang; email:
zhangj@ntu.edu.sg; A. Pokluda; email: apokluda@uwaterloo.ca; R. Boutaba; email: rboutaba@uwaterloo.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/07-ART1 $15.00

DOI: http://dx.doi.org/10.1145/2785733

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://dx.doi.org/10.1145/2785733
http://dx.doi.org/10.1145/2785733

1:2 G. Meng et al.

Fig. 1. Trends of collaborative security based on Web of Science.

respectively [Symantec 2012, 2013]. Individual security once dominated the security
area, but individual security systems must base all of their decisions and actions to
prevent and react to attacks, and detect security vulnerabilities, on limited knowledge.
Increasingly open and scalable networks, sophisticated attack techniques, and more
frequent communication within distributed systems make it more difficult to provide
an effective security service based on individual systems. Several significant threats to
current security mechanisms and strategies include:

—Slow reaction to new attacks. Hackers are now exploiting zero-day vulnerabilities
in order to silently download and install malware on the computers of victims. An
example of this is the Java zero-day attack [Constantin 2013], which is aimed at
Java 7 and may have started on January 2, 2013. There is not yet a complete patch
from Oracle.

—Inconspicuousness of distributed attacks. Distributed attacks tend to remain hidden
until they have made significant damage. According to recent news from ChinaNews
[ChinaNews 2013], Android users are at risk of being infected by the largest botnet
discovered to date, through which compromised smart phones can be manipulated
to divulge confidential information, receive obnoxious advertisements, or launch dis-
tributed attacks.

—Deficiencies in mobile environments. Comparing to the conventional computing en-
vironment, there are many special features in mobile environments [Oberheide and
Jahanian 2010]. Mobile devices lack centralized management and are in constant
contact with the outside world, which makes them susceptible to attacks. Further-
more, the limited resources of mobile devices prevent them from adopting complex,
comprehensive algorithms and technologies to prevent and detect attacks.

To cope with these challenges, researchers and vendors have proposed collaborative
security [Seigneur and Slagell 2009], a new kind of security that coordinates nodes to
perform specific security actions in order to enhance the security of networks or a whole
system. Over the past few years, collaborative security has proven to be an effective
and durable approach to detect vulnerabilities, prevent attacks, and protect sensitive
information. More recently, research on collaborative security has markedly increased.
As outlined in Figure 1,1 the research related to collaborative security is attracting
more attention, as is evident by the steady increase of research published in recent

1This data was collected by searching “collaborative botnet OR collaborative intrusion detection OR collab-
orative* malware OR collaborative* inside* attack* OR collaborative spam” in the Web of Science on March
14, 2013.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:3

years. It is, and will continue to be, a hot topic in the security field for the foreseeable
future. Collaborative security is constantly developing and continues to be applied to
new security domains.

The success of collaborative security relies on not only its ability to address the chal-
lenges of traditional security but also the accuracy and efficiency of security analysis.
An implementation of collaborative security must be mindful not to introduce new
security vulnerabilities. For instance, communication channels could be susceptible
to attacks, privacy may be divulged during collaboration, and the system itself could
be subverted by an internal attacker. As an emerging concept, collaborative security
is often misunderstood; the techniques and mechanisms in collaborative security are
numerous, and the field lacks a state-of-the-art survey and comprehensive taxonomy.
It is, therefore, significant and urgent to have a thorough and comprehensive study on
collaborative security to help structure further research in this increasingly important
area. To the best of our knowledge, this survey is the first to systematically ana-
lyze collaborative security from a computer science perspective. This article will focus
on the scope of collaborative security, the fundamental components, mechanisms and
techniques employed, interesting phenomena, and critical concerns when designing a
collaborative security system. We will then clarify where and how to use collaborative
security, and provide constructive solutions to specific issues. We will focus on:

—The scope of collaborative security, where we will propose a collaborative security
framework based on the fundamental components of 44 investigated collaborative
security systems. This also contributes to understanding the applications of collab-
orative security, and provides a basis for comparing different collaborative security
systems.

—The domains of intrusion detection, spam filtering, malware blocking, the detection
of internal attackers, and the detection of botnets. These systems are explained
within this survey following the proposed framework. We will also consider additional
information, such as enabling technologies and their merits, which help to provide a
more complete view of collaborative security.

—The seven classifications in the developed taxonomy, which include analysis target,
timeliness of analysis, architecture, network infrastructure, initiative, shared infor-
mation, and interoperability. Within this taxonomy, we identify limitations, technolo-
gies and trends that can guide the implementation of collaborative security systems
to guarantee aspects such as trust, privacy and scalability.

—Five challenges (including privacy, accuracy, scalability, robustness and incentive) in
designing and developing collaborative security systems; we also analyze how these
challenges can be addressed by further research.

The remainder of this article is organized as follows: Section 2 summarizes previous
investigations of collaborative security. Section 3 presents a fundamental framework
for collaborative security, which is comprised of the most common components discov-
ered in our investigation. Section 4 investigates the threats emerging in collaborative
security systems. Section 5 surveys and classifies different collaborative systems based
on their security goals. Section 6 describes collaboration mechanisms from different
aspects and creates a comprehensive taxonomy of collaborative security. Section 7 pro-
vides a discussion in which we talk about common phenomena, statistic features, criti-
cal difficulties, and development trends. Section 8 identifies challenges in collaborative
security. Finally, Section 9 discusses possible areas for future research.

2. RELATED WORK

Although there have been earlier attempts to explore the paradigm of collaborative
security and review associated methods, the scopes of such attempts are often restricted

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:4 G. Meng et al.

to specific domains, which lack systematic analysis and classification. Collaborative
Computer Security and Trust Management [Seigneur and Slagell 2009] is a collection of
collaborative security-related research; however, the discussions therein lack detailed
and insightful analysis and summarization.

Common building blocks of collaborative intrusion detection systems are identified in
Bye et al. [2010] and include communication scheme, group formation, organizational
structure, information sharing, and system security. The paper also discusses privacy
preservation during sharing security-related information. In contrast to Bye et al.’s
research, our article covers a considerably larger number of challenging issues and
suggests promising solutions for them.

Two main challenges in designing a collaborative intrusion detection system are
proposed in Zhou et al. [2010]. Their research surveys many coordinated attacks that
traditional intrusion detection systems cannot detect. Zhou et al. introduce a new kind
of intrusion detection system through a collaborative lens. Our work concentrates on
attacks that collaborative security systems are best able to prevent and discusses how
this collaboration can better solve these problems.

There are early works looking into specific aspects of collaborative security, however
they do not consider the entirety of the topic. Chandola et al. [2009] survey multiple
categories of collective anomalies and present key challenges for each category. They
also investigate a series of methods to handle these collective anomalies as well as
a thorough comparison between these methods. Elshoush et al. [2011], for example,
discuss one particular field in collaborative intrusion detection systems: alert corre-
lation. Their research surveyed a considerable number of applied approaches of alert
correlation and presented the strengths and weaknesses respectively. Caruana and Li
[2012] also conducted a survey of spam filtering approaches, specifically those dealing
with collaboration, and provided a summary of the practical applications.

This article enhances previous research by providing a broader investigation of tech-
nologies. We propose a general framework of collaborative security, including intrusion
detection, anti-spam, anti-malware, and botnet detection. In addition, we aim to cau-
tion researchers with potential problems within the collaborative security framework.

3. ANALYTICAL FRAMEWORK FOR COLLABORATIVE SECURITY

In this section, the scope of collaborative security is discussed, specifying the definition,
the objective, and involved domains of collaborative security. We then discuss common
components that have been identified as fundamental to collaborative security systems.

3.1. The Scope of Collaborative Security

In Seigneur and Slagell [2009], collaborative security is briefly defined as “Instead of
centrally managed security policies, nodes may use specific knowledge (both local and
acquired from other nodes) to make security-related decisions.” As stated therein, the
final objective of using nodes is to make security-related decisions. These decisions
must happen in a community in which nodes can contribute their efforts to make
the decisions more effectively and reasonably. Nodes should collaborate with each
other, sharing some security evidence or analysis results, even (local) security-related
decisions. Collaborative security is, therefore, a joint effort between multiple security
systems through the sharing of security-related information to make more effective
and reasonable decisions.

Collaborative security has been widely applied in many security domains, for exam-
ple, intrusion detection, anti-spam, anti-malware, identification of insider attackers
and detection of botnet. The application of collaborative security ranges from the desk-
top environment to the mobile environment, however, with the prerequisite skill of
communication. Nodes in one community need to connect and communicate with each

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:5

Fig. 2. The general architecture of collaborative security.

other as a precondition to perform a specific security-related task. Additionally, secu-
rity is commonly regarded as evidence- and experience-based; therefore, more abundant
information and advanced technologies are prone to better security-related decisions.
This makes collaborative security prevalent in detecting attacks and protecting com-
puting environments.

3.2. Building Blocks of Collaborative Nodes

Due to their common purpose, nodes in collaborative security systems generally share
a common structure. Within this article, we provide an analytical framework for collab-
orative security, which serves as an internal backbone for summarizing and analyzing
previous research. With the analytical framework, we submit different classifications
as well as their strengths and weaknesses existing in collaborative security systems
(see Section 6), which could facilitate the design of an effective and robust collaborative
security system.

In a typical collaborative security system, an intrusion or attack violating pre-defined
rules and restrictions can be captured by specific monitoring nodes. The attack infor-
mation will subsequently be transferred to a unit with a more powerful analytical
ability for confirmation. The information that cannot be handled will be disseminated
to other security systems for collaborative analysis. For better communication, these
systems should negotiate an agreement for exchanged data in advance. Four parts of
a typical collaborative security system are shown in Figure 2. These are regarded as
being fundamental and are described as follows:

—Monitoring Unit: This unit is the first inspection unit and producer of primary
security-related data. As the activator of the whole process, the monitoring unit
detects anomalies and potential threats based on preassigned rules or logics. The
result will then be transferred to the successor collaboration unit. Normally, it can
be deployed on either an endpoint host capturing the suspicious behaviors of local
software, or an intermediate device analyzing abnormal network traffics.

—Decision Unit: This unit makes security-related decisions based on local observa-
tion and acquired knowledge from other nodes. It integrates algorithms and tech-
niques to process the collected information, and eventually decides whether the
captured anomalies are real attacks or not.

—Collaboration Unit: This unit is the core component in collaborative security sys-
tems. It shares local analysis results with other systems on the network (denoted
as message 1©). Similarly, the collaboration unit may also receive knowledge from
the network (the knowledge is either the feedback on the enquired suspicions or

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:6 G. Meng et al.

the possessed knowledge of attacks) denoted as message 2© to facilitate the security
detection. This unit should specify the communication mechanism and associated
technologies among nodes.

—Shared Information: The shared information is a specific data structure, contain-
ing an abstract description of an operand or security evidence disseminated among
nodes. Specifically, the shared information is always well-structured as being stan-
dard and commonly acknowledged by other nodes. In addition, constrained by the
capability of the decision unit, the information may appear in many forms depending
on how the decision unit processes it, which is discussed in Section 6.

Summary: The overarching goal of collaborative security is to make more effective
and robust decisions. Compared to traditional security, collaboration units and shared
information are unique. Therefore, the systems need to make extra communication ef-
forts, normalizing the exchanged information. It is worth mentioning that for a robust
collaborative security system (i.e. not suitable for all), there are always some mecha-
nisms to prevent insider attacks. An example of this is trust management, about which
we will provide a thorough discussion in Section 8.

4. SECURITY THREATS

In this section, we identify ten types of threats collaborative security aims to prevent.
These threats are collected basically from two sources: (1) the surveyed literature
in which certain threats are prevented by collaborative security systems and (2) the
typical security threats from [MIT Corporation 2003a; Undercoffer et al. 2003; Igure
and Williams 2008; Simmons et al. 2009; Microsoft 2013]. Some collaborative security
systems aim to address the issues of general threats, such as intrusion and malware. We
hence conclude the typical and concrete threats in terms of these common taxonomies
of threats. For example, malware may cause the privacy leakage, or privilege escalation
in an attack. Then, systems which can prevent malware can naturally resist the attacks
of privacy leakage and privilege escalation. More details about the correlation can be
found in Section 7.1. We have organized these threats in the following, based on the
goal of the attacks.

Privacy Leakage. A potential risk of downloading online software is the possibility
of exposing users’ sensitive data such as account credentials, preferences, contacts,
and so on. Attackers may use some techniques like brute-force attacks, man-in-the-
middle attacks, and phishing tactics in order to steal sensitive data. Privacy leakage
through downloading malicious software has been exacerbated in recent years on mo-
bile devices with the rise in popularity of mobile applications. Sensitive information
such as the device’s identity, contacts, messages, and financial information are the
main targets for hackers using malware programs. Specifically, sensitive information
potentially attacked is twofold: (1) contacts, messages, personal information available
on social networks; and (2) financial information can be directly accessed by malicious
users. These are examples of explicit privacy, which is mentioned by many in the lit-
erature [Barkan et al. 2003; Schmidt et al. 2009; Enck et al. 2010; Reed et al. 2010;
Schlegel et al. 2011; Arapinis et al. 2012; Grace et al. 2012]. Another kind of privacy
noted is implicit privacy. Implicit privacy denotes the information that malicious users
cannot directly use; in order for it to be beneficial, the attacker must analyze it in order
to reveal valuable information. Using this kind of side-channel attacks, the hacker
can extract secure information by analyzing video and audio data, timing, keystrokes,
power consumption, and notifications of network connection. Kocher et al. [1999] find
secret keys from tamper resistant devices from analyzing power consumption mea-
surements. Schlegel et al. [2011] present an approach that can gather audio data from

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:7

on-board sensors and use it to recognize commercial credentials. Qian et al. [2012] use
packet counter side channels to infer the sequential numbers used to launch inference
attacks. Song et al. [2001], Vuagnoux and Pasini [2009], and Chen et al. [2010] refer to
additional approaches.

Privilege Escalation. It is common to grant privileges to an application upon in-
stallment; however, vulnerabilities in these applications can result in an increase of
privilege authorizations, data tampering or the disclosure of information. Permissions
on Android, for example, must be explicitly identified and applications cannot access
the device’s resources until the installer grants it the required permissions. However,
many malicious applications circumvent the permission mechanism and exploit indi-
rect tactics to access sensitive resources. As Grace et al. [2012] describe, permission
mechanisms can be infiltrated by malicious applications calling other applications that
have their authorized permissions; RageAgainstTheCage, Exploid, and Zimperlich are
three sorts of typical exploits of Android vulnerabilities that are employed to elevate
the privilege of applications [Zhou and Jiang 2012; Jiang and Zhou 2013]. In addition,
offline attackers can manipulate mobile devices into launching a distributed denial of
service attack. We categorize these into threats of authorization violations, and such
attack cases can be found in Dagon et al. [2004], Traynor et al. [2006], Cho et al. [2010],
and Singh et al. [2010].

Authentication Violation. Authentication is a security scheme used to identify
whether a user is as it claimed, using signature and encryption technologies. How-
ever, some malware may impersonate as other applications in order to carry out these
particular behaviors. Examples of cases on authentication violation occuring in mobile
devices can be found in Baltatzis et al. [2012], Fuchs et al. [2009], Qian et al. [2012],
and Schmidt et al. [2009].

Spam. While it is sometimes treated more of an annoyance than a threat, by sending
myriad messages (e.g., emails), attackers can post an advertisement or spread viruses
through spam. From another prospective, they can result in high overhead of traffic,
which can cause denial of service. Due to high profit and low technical requirements,
spam has become one of most significant threats.

Routing Trap. Routing Traps occur when nodes claiming to transfer and forward
packets fail to perform their duty, which will deny service to the associated nodes. Ex-
amples of this kind of attacks are: sinkhole attacks2 [Krontiris et al. 2007b]; blackhole
attacks3 [Patcha and Mishra 2003], and; selective forwarding attacks4 [Krontiris et al.
2007a]. These malicious nodes should be equipped with high-speed bandwidth, rapid
reaction, and insidious tactics to entice normal nodes to consider them as the transmit
point. However, the malicious nodes discard all or partial packets, leading to a black
hole in the network in order to impede communication.

2The sinkhole attack occurs when a compromised node exploits the vulnerability of the routing algorithm,
makes it as the relay node for as many nodes as possible. In the consequence, large portion of traffic will
be forwarded to this node during the routing process. The attacker can subsequently launch more severe
attacks, such as tampering and replaying.
3The blackhole attack is a compromised node playing the role of a relay. Each packet through this node will
be withhold and cannot reach to its destination. This type of attack gives the impression of a black hole
because the nodes it serves cannot get outside and communicate with other nodes.
4The selective forwarding attack is that a compromised node intentionally or randomly discards some packets
to prevent their propagation in the network. Superior to the blackhole attack, selectively forwarding packets
can avoid the awareness of its neighbours and reduce suspicion of its wrongdoing.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:8 G. Meng et al.

Denial of Service. In a denial of service attack, an attacker tries to make a host,
or services on this host, unavailable to its intended users. Availability is a significant
concern of service providers. An attacker may crash services on a host, for example,
exploiting a vulnerability existing in a service to disturb its normal operation, and
thereby making it unavailable to legitimate users; it can also flood a host by issuing
a huge number of requests to prevent other users from connecting to the host. These
kinds of attacks are exacerbated in mobile ad hoc networks because newly joined mobile
devices, which may be potentially infected by Trojan horses, may form an uncontrolled
botnet. Subsequently, they can launch a distributed denial of service attack to cause
too high overload and eventual breakdown of the targeted host.

Deceptive Interaction. Attackers try to deceive innocent agents and convince them
that they are communicating with a trusted principle. After obtaining the trust from
these agents, attackers can launch further attacks. For example, one network node
can spoof other nodes that it can redirect packages to the specific target in a routing
process. However, it will definitely not accomplish the commitment as a relay node.
Nodes, hence, cannot connect to the target as expected.

Malicious Code Execution. In this attack, malicious code is deployed somewhere in
advance, and attackers can exploit existing vulnerabilities of systems to execute the
malicious code. The malicious code is either a virus or a worm, which can further cause
damage to the system [Kim et al. 2010].

Abuse of Functionality. To launch an attack, attackers may manipulate one or more
functionalities of systems, which should not be used arbitrarily. By breaking this se-
curity policy, the attackers can alter or influence the normal behaviors of the system,
or destroy the integrity of information. In short, this attack can be regarded that an
attacker leverages the intended functionality to obtain the undesired outcome of the
target system. For example, a rantankerous user may type incorrect passwords a spe-
cific number of times to lock out an innocent account [Microsoft 2014].

Resource Depletion. Every node in collaborative security systems has limited re-
sources to perform its task, especially for mobile devices and sensors. It is even ac-
centuated due to their limited computing power, storage and energy. Malware tries to
occupy clock cycles of CPU, take up all storage or exhaust energy to affect other soft-
ware’s functionalities. Though there is a considerable development of physical hard-
ware, computation power, memory capacity, and battery supply, it is still the bottleneck
for mobile devices and sensor devices. The installed malware can exhaust the resources
and affect the functionalities of other applications event cause the breakdown of the
system. In Dagon et al. [2004], Nash et al. [2005], Racic et al. [2006], and Kim et al.
[2008], battery life has been proven as a prominent shortcoming that the attackers
likely use to make the device unavailable. Moreover, computation power [Pütz et al.
2001; Miettinen and Halonen 2006; Bye and Albayrak 2008; Becher 2009] and mem-
ory [Nash et al. 2005; Miettinen and Halonen 2006; Becher 2009] are both the enticing
targets for attackers concluded from known attacks.

Summary: These types of threats provide a rich environment for collaborative security
to emerge and develop. Unsurprisingly, the deficiencies and ineffectiveness of individ-
ual security dealing with these threats make collaborative security more attractive.
Malware detection, for example, is usually based on malware signatures or anomalies
(henceforth referred to as “knowledge”) [Idika and Mathur 2007], from the prospective
of methodology. Compared to the dramatically increasing number of malware variants,
the increase of the knowledge occurring in an individual system is sluggish. Merging
these security systems could assist in facilitating the timely prevention of the newest

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:9

kinds of malware. Moreover, some attacks (e.g., privacy leakage and privilege escala-
tion) may bypass the protection of the security system through the collaboration of
several attackers. A collaborative security approach has been found to be useful in
detecting such attacks.

5. COLLABORATIVE SECURITY SYSTEMS

In this section, we present six types of collaborative security systems in terms of their
security goals. We first summarize the existing research, as well as the improvement on
previous works in a chronological order for each kind of collaborative security systems.
We then provide a conclusive description based on the analytical framework, followed
by a discussion on unique collaboration highlights and technologies.

5.1. Collaborative Intrusion Detection

Intrusion detection can help improve the security of networks and hosts by immedi-
ately reactions to attacks; this can then be divided into Host-based Intrusion Detection
(e.g., OSSEC [2013] and TripWire [2013]), Network-based Intrusion Detection (e.g.,
SNORT [2013] and Bro [2013]). However, individual power is not always enough. To
enhance the effect of intrusion detection systems, sharing data, known as Collabo-
rative Intrusion Detection Systems (CIDSs), is a good option. In this subsection, we
investigate 12 collaborative security systems.

Indra, proposed by Janakiraman et al. [2003], is a typical CIDS with trusted nodes
sharing security-related information. Each node equally contributes to the protection
against intrusion attempts. The authors came up with three inventive 3-How problems
in CIDSs: how to communicate with each other; how to trust shared information and
senders, and; how to react to intrusions. These are the three underlying problems when
designing and developing CIDSs. In the paper, Janakiraman et al. briefly introduced
the measures taken to solve these problems.

Indra stresses the significance of information sharing, however, disregards the effi-
ciency and the reasonability of communication. To foster the collaboration among in-
trusion detection systems and accelerate the look-up process, Yegneswaran et al. [2004]
designed DOMINO (Distributed Overlay for Monitoring InterNet Outbreaks). The com-
munication in DOMINO is guaranteed by employing a hierarchical architecture, in
which the responsibilities vary from one node to another. Trusted axis nodes on the
highest level are organized in a peer-to-peer manner; satellite nodes taking an axis
node as the root form a hierarchical tree for the bottom-up message delivery; and ter-
restrial nodes, which are deployed at the bottom of the infrastructure, keep delivering
the daily intrusion summaries to their superiors. Additionally, there is a certification
authority distributing keys of cryptography that can ensure the trustworthiness of
the messages. This design enables DOMINO to be secure, scalable, fault-tolerant, and
facilitates data sharing.

Influenced by the biological immune system, Luther et al. [2007] propose a coopera-
tive intrusion detection approach. The whole system is comprised of many individual
artificial immune system (AIS) agents, which are organized in a novel manner called
hybrid decentralized. By negative selection, each AIS agent chooses certain detec-
tors during the training phase and exchanges detectors’ status information, which
can greatly improve the performance of detection as well as reduce false positives in
anomaly detection.

In contrast to returning analysis results immediately as described earlier, a collabo-
rative approach that collects security-related information afterward and proceeds with
aggregation or correlation is called TRINETR. Yu et al. [2004] propose this collaborative
architecture for multiple intrusion detection systems. It can collect alerts generated by
IDSs by standardizing the intrusion alerts. In order to make the analysis more effective

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:10 G. Meng et al.

and accurate, the system first determines the priority and affected systems of alerts
by referring two bases: (1) network and host knowledge base (e.g., IP address and ser-
vice ports) and (2) vulnerabilities knowledge base (e.g., CVE [MIT Corporation 2003b],
Bugtrap [SecurityFocus 2003] and CERT [CMU 2004]). The system then finds the re-
lationship among the alerts. By gathering, aggregating and correlating the alerts, the
collaborative approach can find potential sophisticated attacks more macroscopically
and precisely.

In addition, CIDSs are also widely used in Mobile Ad Hoc Networks (MANET) be-
cause they can significantly alleviate the limitation of resources. Zhang et al. [2003]
proposed a collaborative technique for intrusion detection systems in mobile networks.
Every node in mobile networks is deployed with an IDS. Any node that detects an
intrusion or anomaly will confirm the attack with the collected evidence, and subse-
quently initiate a response. If it does not have strong evidence, it will initiate a global
cooperative detection by sending state information of the intrusion to its neighbours.
The state information represents the level confidence the node has about the likelihood
of an attack. All the nodes together can then collaborate to decide if it is an intrusion
of anomaly based on majority rule.

This approach does leave some issues, however; for example, anomaly detection
will produce relatively high false alerts and nodes work in an inefficient way—all
the nodes have to participate into the global intrusion detection process without any
duty separation. Given this, Kachirski et al. [2003] proposed a distributed intrusion
detection system for MANET based on mobile agent technology. Nodes are equipped
with specific functions that are only responsible for some specific tasks, which can
minimize the power consumption and processing time. In addition, clustering is also
used in this system to reduce the workload of the network, whereby nodes are elected
to monitor the network and make decisions accordingly. The segregation of duties
can therefore maximize the utilization rate of nodes and minimize the consumption,
thus making communication more efficient than employing the hybrid decentralized
architecture (e.g., cluster).

Inspired by the work of Zhang et al. [2003], Albers et al. [2002, 2007] presented a dis-
tributed and collaborative architecture of IDS amongst mobile agents. The distribution
of the intrusion mechanism was achieved by implementing a Local Intrusion Detec-
tion System (LIDS) on each node. Albers et al.’s work broadened the knowledge of the
environment compared to [Zhang et al. 2003]. LIDSs share not only intrusion alerts,
which are the detected intrusions on each local host, but also security data, the envi-
ronmental information about the hosts. Moreover, the approach employs a trust-based
mechanism to enhance the robustness of LIDS, where nodes behaving abnormally will
be excluded from communities until they reauthenticate themselves.

To some extent, CIDSs are restricted by runtime resource constraints in MANET.
To solve this problem, Huang and Lee [2003] proposed a cluster-based scheme (also
mentioned in Albers et al. [2002], Kachirski and Guha [2003], and Anantvalee and Wu
[2007]) for their CIDSs where periodically a node is elected as the intrusion detection
agent for a cluster. It is claimed that most of MANET nodes are working uselessly unless
the system is suffering intensives attacks. Therefore, to make it more efficient, the
authors proposed cluster formation algorithms and a cluster-based intrusion detection
scheme. The whole network can be divided into several clusters; one node is elected as
the cluster head in each cluster, and then takes the responsibility for monitoring the
whole cluster.

The organizing principle of clusters just mentioned is based on distance amongst
mobile devices; however, there are other principles in forming a group in these IDSs.
Bye and Albayrak [2008] presented a cooperation scheme named Collaborative Intru-
sion and Malware Detection (CIMD): all nodes state their objectives and form into

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:11

groups in order to exchange security-related information in terms of these objectives.
The authors gave a tree-oriented taxonomy for the representation of nodes within the
cooperation model, introduced, and sequentially evaluated an algorithm for the forma-
tion of the detection group. The taxonomy for cooperation is used for grouping nodes
into an interest-based collaborative security system. Additionally, with the formation
algorithm, nodes with similar interests as well as property bases can be united into a
detection community.

IDSs can definitely benefit from sharing plenty of information. However, some in-
formation may not be expected to be exposed to others, for example, IP addresses and
logging files. Moreover, the communication among IDSs inevitably increases the traffic
of networks and leads to congestion. To address the aforementioned problems, Locasto
et al. [2005] proposed a collaborative mechanism for P2P intrusion detection named
Worminator. In regards to privacy, the authors used Bloom, a one-way data structure
that supports two operations (insertion and verification) to guarantee compactness,
resiliency, and security. Regarding limited bandwidth, a network scheduling algorithm
is introduced and can dynamically correlate IDSs into a detection community. As it
is only a subset of all IDSs, the algorithm can significantly reduce the overhead and
mitigate the congestion so that one IDS only communicates with others in the same
community.

More recently, Distributed Hash Table (DHT) is widely used to enhance the commu-
nication in intrusion detection systems. DHT-based overlay networks can accelerate
the network transmission and protect data transmitted via networks. With the peer-
to-peer architecture, Marchetti et al. [2009] presented a distributed system in which
each collaborative alert aggregator can detect intrusion and disseminate local analysis
in a collaborative manner. The system is built on a DHT overlay network, wherein
alerts can be quickly shared amongst different nodes. Similarly to Marchetti et al.’s
work, Czirkos et al. [2012] proposed Komondor, which used a DHT overlay network
named Kademlia. It adopts a peer-to-peer architecture to foster scalability and avoid
a single point of failure. Furthermore, Konmondor can minimize the effect of churn5

caused by the peer-to-peer architecture by remapping keys in each node when a node
is leaving and then recalculating the distance to the newly joined nodes.

Summary: According to the analytical framework, the monitoring unit in collabora-
tive intrusion detection is generally an individual intrusion detection system (IDS),
and the decision unit is responsible for confidently determining the real intrusions
through collaboration. Within the previous section, we placed emphasis on the collab-
oration unit and shared information. The collaboration unit builds the relationship
between different IDSs and shares information about intrusions. After investigating
the aforementioned works, we analyzed three highlights of CID, as shown in Table I:
communication, robustness, and privacy. Communication is fundamental to collabora-
tive intrusion detection because IDSs need to share security-related information with
each other in order to perform a specific task. The mechanism for communication should
satisfy both the efficiency and the scalability; that is, nodes should be organized in an
effective manner for communication, and network traffic that is generated should be
minimized in order to fit into vast networks. Peer-to-peer networks should be the first
attempt to enhance the communication in CIDS used in Janakiraman et al. [2003] and
Zhang et al. [2003]. Subsequently, overlay networks (e.g., DHT overlay network) are
proposed to accelerate the communication in Yegneswaran et al. [2004], Marchetti et al.
[2009], and Czirkos and Hosszú [2012], and community-based networks are formed to
reduce network traffic and make the communication more effective [Albers et al. 2002;

5When nodes join or leave the network frequently, it can cause a fluctuation of the network.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:12 G. Meng et al.

Table I. Highlights in Collaborative Intrusion Detection

Highlight Items Literature
Peer-to-peer Janakiraman et al. [2003] and Zhang et al. [2003]

Overlay network
Yegneswaran et al. [2004] and Marchetti et al. [2009]
Czirkos and Hosszú [2012]

Communication

Cluster formation

Huang and Lee [2003], Albers et al. [2002], and Bye and
Albayrak [2008]
Luther et al. [2007], Kachirski and Guha [2003], and
Locasto et al. [2005]

Robustness CA Janakiraman et al. [2003] and Yegneswaran et al. [2004]
Trust/Reputation Albers et al. [2002] and Locasto et al. [2005]

Privacy Bloom Filter Locasto et al. [2005]

Kachirski and Guha 2003; Huang and Lee 2003; Locasto et al. 2005; Luther et al. 2007;
Bye and Albayrak 2008]. Robustness is the capability of resisting insider attacks which
may subvert the entire system. In this section, there were two main methods to en-
sure the robustness: Certification Authority (CA) and Trust/Reputation. Certification
Authorities are brought in for key distribution and authentication. Messages shared
in the system can be encrypted or hashed to avoid counterfeit messages, as shown
in Janakiraman et al. [2003] and, Yegneswaran et al. [2004]. Trust/Reputation is an al-
ternative option to enhance the robustness. Nodes communicate based on mutual trust
in a similar community, as outlined in Albers et al. [2002] and Locasto et al. [2005].
For privacy, bloom filtering is used by Locasto et al. [2005] to protect the sensitive
information included in the alerts. Further details of robustness and privacy will be
discussed comprehensively and thoroughly in Section 8.

5.2. Collaborative Anti-Spam

The struggle between spam and anti-spam will not likely end in the near future because
the Internet is a major tool for advertising and marketing. Loathsome advertisers, virus
disseminators, and insidious intruders are attempting to disturb or damage our normal
life all the time. For example, they send massive either enticing or boring emails to
users whose email addresses are unconsciously exposed in the Internet. Even worse,
spam keeps evolving into advanced variants to avoid the detection of traditional anti-
spam systems. In this section, we investigate eight emerging anti-spam systems, which
improve the accuracy of detection and reduce the risk of infection via collaboration.

SpamNet [Cloudmark 2013] uses a central server model to address these problems.
Users can upload their spam into a central server and also can query whether an email
is spam or not. But it is no doubt that it has a risk of single point of failure. In such
a case, Kong et al. [2006] present a collaborative mechanism for spam filtering. The
contributions are twofold: a novel percolation search algorithm, which reliably retrieves
content in an unstructured network by looking through only a fraction of the network.
It can also avoid single point of failure because all queries and communication are
exchanged via email through personal contacts; a well-known digest-based indexing
scheme, which can accelerate the process of searching, has high resilience to automatic
modification of spam, preserves privacy and produces zero false positives.

Comparing to spam digest proposed in Kong et al. [2006] and Lai et al. [2009] provide
an approach of spam rule generation based on rough set theory. They present a collab-
orative framework to generate, exchange, and manage spam rules. At first, spam rules
can be generated in each mail server through rough set theory based on the metadata,
for example, header information, keyword frequency and format information. And out-
of-date rules are periodically dropped via a reinforcement learning approach. In the
sequel, spam rules will be converted into XML format and exchanged by different mail

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:13

servers via trusted channels. The limitation of this approach is, however, rough set
theory can produce false negatives and false positives, which have been illustrated in
the article.

In addition, there are several important challenges (e.g., preserving privacy and re-
taining important features) when employing collaborative anti-spam systems proposed
by Li and Zhong [2008, 2009]. It is no doubt that privacy preservation should be the
first and foremost one. Emails may be involved with some private information. If they
are published without any preservation, the privacy of participating entities will be ex-
posed and captured by some malicious users. To address these problems, they present
a large-scale privacy-aware collaborative anti-spam system called ALPACAS. In their
framework, anti-spam agents can cooperate by sending or receiving the shingle-based
transformed feature set (TFSet)6 to others to guarantee the confidentiality. However,
ALPACAS has two major limitations: it is helpless if there are some malicious email
agents who upload erroneous information into the knowledge bases, and it is suscepti-
ble to collaborative inference attack in which attackers can infer the content of emails.

Moreover, Sousa et al. [2010] propose a novel collaborative anti-spam system that
can be classified into interest-based collaboration. It employs an approach to remove
duplicate messages by MD5 signatures of the body messages and sort them chronologi-
cally, which is more realistic than random sampling in Zhong et al. [2008]. In particular,
in the local view, they use Bayesian filtering to distinguish spam from all emails; from
the global prospective, since every email server stores a portion of the spam databases,
they can collaborate with each other based on their interests to enhance their accu-
racy. Nevertheless, it also does not provide an effective approach to solve the problems
existing in ALCAPAS.

So far, there are some works that solve the insider attacks using trust and reputation.
Sirivianos et al. [2011] introduce the first collaborative spam mitigation system. It takes
into account the quality of reports and the social network of reporters’ administrators,
in order to measure the trustworthiness of the reporters. SocialFilter, which they
develop can improve the reliability based on Sybil-resilient OSN-based trust inference
mechanism. It further enhances the trustworthiness using social links and is able to
produce no false positives despite the absence of reports.

Shi et al. [2011] extended the scope of collaboration by introducing three kinds of
collaboration for anti-spam systems: (1) recipients collaboration is that a vast number
of recipients can collaborate, share information, and in addition give feedback about
whether the email is spam or ham to enhance the accuracy of detection; (2) honeypots7

collaboration indicates that spammers that the honeypots glean will be timely shared
among email servers; (3) Internet service providers (ISPs)collaboration plays a signifi-
cant role in spam filtering. With collaboration among ISPs, ISPs can filter or set up a
warning to spam in the process of email delivery.

The collaborative security approach is also applied to detect comment spam. The
issue of comment spam emerges as the popularity of blogging, in which malicious
users want to attach their advertising hyperlinks, malicious or enticing web sites into
comments.

PalProtect is proposed as a plug-in of WordPress, the most prestigious blog-
ging system all over the world, to collaboratively detect comment spam by Wong
et al. [2006]. PalProtect uses other anti-spam plug-ins to perform the detection of

6Transformed feature set is the fingerprint of an email (a.k.a. the digests of an email), which can characterize
the message content.
7From the perspective of anti-spam, a honeypot is a fake email address thst can be effectively used to identify
spammers. It is based on the concept that anyone who is not your contact but sends you emails is likely to
be a spammer.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:14 G. Meng et al.

spam, and it puts more focus on correlation and sharing information although it also
uses its own signature database to categorize and identify the comment spam. It pro-
vides five ways to create signature for each comment, of which Z-String is the most
remarkable one by counting the frequency of the letters in the comment. Z-String is a
one-way data operation, meaning that you cannot construct the original input from the
signature, but can still use it as the match object. Therefore, it can reserve the privacy
of each comment.

Summary: According to the analytical framework, the monitoring unit can monitor
some suspicious emails or comments based on some rules (the rules may be some
features of spam). The decision unit will determine them as real spam or not by per-
forming some analysis work. Apart from these two units, collaboration unit and shared
information are the mainly parts that we give in the following text.

The difficulties of distinguishing spam and ham in a collaborative manner are var-
ious. Spammers always do some tiny alternations to spam in order to escape the in-
spection of anti-spam systems, which leads to being useless for anti-spam systems to
share exact spam. Hence, anti-spam systems instead extract spam patterns based on
confirmed spam and disseminate these patterns all over the network to increase the
accuracy of spam detection. Nevertheless, it may also produce a high false-positive rate
if the patterns are not well abstracted and extracted.

In the literature we investigated, two kinds of extraction techniques are proposed.
One is extracting the features of emails, like header information, keyword frequency
and format information [Lai et al. 2009]; the other is producing the digests of emails,
like shingle-based transformed feature set [Zhong et al. 2008]. These extraction tech-
niques can also help to preserve the privacy of emails, as ham may be very confidential
and should not be exposed to other unrelated persons. As mentioned earlier, Bloom Fil-
ter and Z-String [Wong 2006] are other two alternative approaches employed in privacy
preservation. However, these approaches of privacy preservation, without exception,
have degraded the accuracy of detection in certain extend.

Only two of investigated papers have mentioned how to prevent insider attacks to
secure the whole system. SocialFilter [Sirivianos et al. 2011] builds a robust relation-
ship between spam detectors via social network. It seems reasonable as friends need to
trust each other. But if one is compromised or an essential rantankerous “friend,” the
performance will be greatly degraded. Another work is from PalProtect [Wong 2006].
Messages are encoded with a Pretty Good Privacy (PGP) key before sent to other sys-
tems and each node maintains a “buddy” list to authenticate and decode messages.
However, the system requires a lot of maintenance, and the whole system will be easily
subverted if one’s PGP key is divulged.

5.3. Collaborative Anti-Malware

Conventional anti-malware systems rely on highly trained experts to identify virus,
worm, and trojan signatures from binary files [O’Donnell and Prakash 2006]. Collab-
orative anti-malware systems, which use collaborative filters, can effectively and ac-
curately filter the majority of malware away without too much overhead of individual
detection. O’Donnell and Prakash [2006] try to adopt a collaborative approach to detect
viruses. As the experimental results indicate, the collaborative filters can increase the
speed of detection and extremely low false-positive rate. However, the authors fail to
provide more details on techniques when applying collaboration to detect virus.

It is not efficient to store all malware signatures in end-hosts, concluded from the
four-month observation of Cha et al. [2011]; Only 0.34% of all signatures in ClamAV
were necessary for detecting malware. Besides, the current anti-malware systems used
to keep all signatures pinned in main memory, which can reduce the performance of

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:15

the host, and the matching algorithms are insufficient for high-effective detection.
Therefore, they propose an efficient and distributed approach. SplitScreen, the inte-
grated extension to ClamAV, adopts a centralized architecture to reduce the overhead
of clients and accelerate the process of malware detection. In an individual domain, the
SplitScreen server will distribute the latest malware signatures in the clients. Based
on these signatures, the clients can separate suspicious files from harmless ones. Af-
ter that, they acquire all signatures of suspicious files from the server to identify the
malicious files.

Summary: Collaborative anti-malware systems can detect anomalies, viruses, trojan
horses, worms, and spyware, and they usually utilize the signatures of malware for
the matching process. In the analytical framework of collaborative security systems in
Figure 2, the monitoring unit is usually some anti-virus software deployed in a host,
and the decision unit can determine if there is some malware running on the host.
For collaboration and shared information, message 1© is the signatures of suspicious
malware in collaborative anti-malware systems, and message 2© is the feedback to
these signatures from other systems. Similar to collaborative intrusion detection, if one
host can individually determine the malware, it will just mark it and disseminate it to
other peers. Otherwise, it will ask for other peers or the central server to determine.
After all, the database of signatures will be so huge that every single node cannot
hold all of them, so the knowledge should be deployed in a distributed way, not only
to guarantee the performance of malware detection but also to reduce the storage of
signatures in each node.

5.4. Collaborative Identification of Malicious Nodes

Due to easy deployment and low cost, WSN and MANET are ubiquitous to collect either
internal or external data for further analysis, for example, identifying malicious nodes.
The nodes in these networks, thus, participate in monitoring to provide the evidences
of malicious nodes. In order to boost data collection, Cardone et al. [2011] propose a col-
laborative monitoring system that can bridge these two kinds of networks seamlessly.
All the nodes are grouped into different clusters, and one of them is elected as the root,
then other nodes form a tree-like topology. The data collected in each leaf node is logi-
cally transmitted to its parent, eventually the root. Therefore, it can obviously facilitate
the detection of attacks in system layers, for example, anomalies and viruses. At last,
the full assessment and quantitative evaluation in the experiment indicate that the
proposed approach is qualified for ensuring effectiveness and feasibility though with
limited resources.

The work of Cardone et al. fails to explain the detailed monitoring schedule and the
usage of resource. Gu et al. [2012] present an approach to address the traffic-aware
monitoring (TRAM) problem. To optimize the usage of the monitoring channels, they
come up with three heuristic strategies and additionally develop a TRAM protocol to
support the simultaneous operations of monitoring and transmission in mesh networks.
Nodes in the mesh network exchange the ID of neighbours’ assigned channel, loads,
and time allocation to mediate and coordinate monitoring and forwarding to guarantee
the maximal monitoring coverage.

AODV is the acronym of Ad-hoc On-demand Distance Vector Routing protocol, which
is widely used in ad hoc networks to route and forward packets to the intended re-
ceivers. The black hole attack is an important problem that occurs in AODV. Patcha
and Mishra [2003] propose a collaborative architecture to detect and exclude malicious
nodes that act in groups or alone by extending the watchdog. First, nodes in ad hoc net-
works are classified into trusted and ordinary nodes. Second, watchdogs are selected
from trusted nodes to monitor other nodes (e.g., node energy, node storage capacity

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:16 G. Meng et al.

available and node computing power) for a specific period. At last, two thresholds,
Suspect and Acceptance, are maintained to determine a compromised or trusted node
separately once any node crosses the boundary for all watchdogs’ neighbors. The ap-
proach is built on the assumption that the network composition is constant, and there
are no nodes leaving frequently and rapidly.

Similarly, Krontiris et al. [2009] took sinkhole attacks [Krontiris et al. 2007b] and
selective forwarding attacks [Krontiris et al. 2007a] as objectives of prevention. They
made a first attempt to formalize attacks and proposed a cooperative algorithm to
identify compromised nodes. They made each node participants into identifying the
malicious node and providing its evaluation value to neighbours. In the consequence,
the approach can produce more accurate results. But it ceases to work if there are
many attackers which can launch a collusion attack, and it also can be influenced by
dynamic node addition and removal in the networks.

There is also a trend to utilize collaborative approaches in the detection of phishing
domains. For example, Zhou et al. [2009], aiming to address the issues of detection
of Fast Flux (FF) Phishing Domains, present two approaches to correlate evidences
collected from a number of DNS servers and suspicious FF domains. In order to uncover
the phishing domains, every node is eager to report the list of suspicious phishing
domains. The domains of which the possibility exceeds the threshold are confirmed as
real phishing domains. Considering that a centralized architecture is at a risk of single
point of failure and insufficient of scalability, they deploy these technologies in the
previous work LarSID [Zhou 2007]. LarSID utilizes a publish-subscribe mechanism to
share evidences in a peer-to-peer network; not only can nodes share information, but
they will also correlate evidences acquired from other nodes.

Summary: Malicious nodes are widely existing in peer-to-peer networks. An individ-
ual node lacks of sufficient and necessary evidences to determine the compromised
node. Even if they can, it is not guaranteed that they are able to convince others
with confirmed nodes. Given that, collaboration among nodes is undoubtedly a better
choice. In this case, detection unit in Figure 2 is responsible for reporting dubious
nodes against their abnormal behaviors or advices from authorities, and it sends the
lists of suspicious nodes (denoted as message 1©) to the next unit based on its own
knowledge. Collaboration unit is to disseminate its own report and acquire reports
from others (denoted as message 2©). Some scheme (e.g., MAC) may be exploited to
ensure the authentication of reports in this unit [Krontiris et al. 2009]. Decision unit
usually utilizes some algorithms to correlate the reports and then decides which nodes
are compromised. Threshold [Patcha and Mishra 2003] and majority rule [Krontiris
et al. 2009] are two typical approaches found in the literature. The threshold can be
derived from the statistics of the specimen or the social theories, that is, experiences
undergone before [Patcha and Mishra 2003]. Usually, the identification of malicious
nodes is targeting at the routing trap in the host layer and to enhance the robustness
of communities.

5.5. Collaborative Malware Detection in Mobile OS

Sophisticated mobile operating systems, from Symbian OS, Windows Mobile to An-
droid, iOS and Windows Phone, have opened up a new era of mobile life. Young as they
are, a considerable number of software has been shifted to mobile devices and the num-
ber of applications on Mobile OSs has exponentially increased in the past few years.
However, malware also swarms into this area and puts a great risk on mobile users.
What can ease our worries about the situation is that some techniques and theories
of malware detection have been proposed and started to play an indispensable role in
mobile times.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:17

SmartSiren, proposed by Cheng et al. [2007], is a collaborative virus detection and
alert system for smartphones. In order to eliminate the resource constraints, they uti-
lize a proxy-based architecture, in which every smartphone is only responsible for col-
lecting information of local behaviors and the proxy server will carry out a joint analysis
in terms of this information for not only single-device but also system-wide detection of
abnormal behaviors. It is noteworthy that anonymization and labeling are performed
on the reports before submission to prevent privacy from leaking to the proxy server.

Unfortunately, there is a dramatically waning interest in protecting Symbian OS
and Palm OS. Android and iOS inversely attract the majority of researchers as well as
hackers. Recently, attacks aiming at smartphones are emerging endlessly, like stealing
users’ sensitive information, making smartphones unavailable and so forth.

Schmidt et al. [2008] propose an approach to monitor and detect collaborative anoma-
lies. The framework can be divided into three parts: on-device analysis, collaboration,
and remote analysis. Clients can communicate, for example, sharing detection results
or anomalous feature vectors with each other, and are also able to submit data to the
remote server once the local detector cannot handle it. Monitoring and Detection in
each client is of three-layer architecture. In the lower layer, the main task is to monitor
signals or function calls and try to detect anomalies. In the higher layer, collaboration
module and response module will take part in forming the collaborative community
based on interests. In the sequel, two protocols are provided to either exchange mes-
sage traffic for a specific computation task or request detectors from its neighbors for
a specific event.

Furthermore, Schmidt et al. [2009] have furthered collaborative malware detection,
especially on on-device analysis. By performing static analysis on executables, they can
obtain their function calls to the Android system. Then, multiple mobile devices sharing
the analysis results form a collaborative environment that can effectively enhance the
performance of malware detection.

Agarwal et al. [2010] have proposed a collaborative mechanism to diagnose mobile
applications in Android and iOS platforms. They first give a brief summary for crash
logging mechanisms and analysis of trouble tickets. Then they propose an approach
that uses spatial spreading to reduce measurement overhead, statistical inference to
recover incomplete data, and adaptive sampling to refine the dependency graph. All
these techniques are integrated into a system called MobiBug. The MobiBug server
as well as mobile phones that connect to it form a centralized topology. On the phone
side, MobiBug matches the crash information in a signature-based manner, and for
the failures that are unsuccessfully matched, that is to say potentially new bugs,
MobiBug will send them to the server for further probes. In the server side, MobiBug
collects massive amount of failure information and conducts dependency analysis and,
if necessary, probabilistic analysis to statistically infer incomplete data received.

Oliner et al. [2012] develop a tool, Carat, to perform an energy diagnosis on mobile de-
vices, which can find energy-wasting applications installed on the mobile device. Carat
takes a collaborative, black-box approach to find energy bugs in applications. The front-
end application collects state information of power usage of applications then transfers
them to the Carat server. The back-end analysis engine can statistically analyze the
state information stored in the server and return the statistical data (e.g., applications
that are using up the battery and whether it is normal, countermeasures) to users.
Carat is of a centralized topology and receives state information from thousands of
users and returns a customized action list, bug lists and hog lists.

Summary: These types of systems mainly try to mitigate security threats in mobile
devices such as privacy leakage, privilege escalation, and resource depletion. There are
a variety of characteristics of collaboration in mobile networks, such as the following:

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:18 G. Meng et al.

—Due to the inadequate computing ability of the nodes, the majority of collaborative
systems employ the centralized architecture, in which all mobile devices send on-
device data to the central server.

—Exchanging data can only facilitate individual security detection other than the
necessary conditions. Without sharing information, mobile devices can still carry out
the detection, although it may be less effective.

—The data are even, if not processed, merely raw. For instance, logs of activities, usage
of hardware, and so forth, that is to say, a single mobile device only performs some
simple even none analysis. The limited resources have obviously restricted the power
and scope of malware detection.

—Current research on malware detection in mobile devices is focusing on privacy
preservation because mobile devices store amounts of sensitive information of the
owners. It is pivotal to protect privacy information from stealing and tampering.
However, hiding some features of information or employing cryptography will de-
grade the performance of detection. The dilemma does not have an effective solution
yet.

5.6. Collaborative Detection and Resistance to Botnets

Botnet is one of the most critical security threats. Botnet is formed by attackers com-
promising thousands of computers called bots, and attackers control these bots over-
whelmingly by sending command and control messages. The bots can be used to steal
sensitive information, disseminate spam or virus, and launch a distributed DoS attack.
Therefore, collaborative detection and resistance to botnets can fix out security threats
as DoS in the network/host layer, malware in the system layers, and the threats in the
application layer (e.g., privacy and spam).

In his PhD thesis, Malan [2007] proposes a rapid botnet detection method through
a collaborative network of peers. Each node in this network constantly runs software
that monitors the behavior of its processes and sends a set of snapshots of those
processes’ behavior to a snapshot server periodically. By aggregating the snapshots and
calculating their similarities across peers, the server can determine which behaviors
are anomalous and the purposes of these anomalous behaviors. The architecture adopts
a client-server model, which can also bring in the threat of single point of failure.

Wang and Gong [2009] propose a collaborative architecture for detection of botnets.
In this architecture, they build an in-depth collaboration of three levels for detection
systems, that is, information collaboration, feature collaboration, and decision-making
collaboration. It is decentralized, meaning that there is no single point of failure. In
different layers of collaboration, different information is exchanged. For example, in
the feature collaboration layer, features are extracted and correlated and then sent
to each other. However, the paper fails to answer some critical questions like the
normalization of information shared among peers, and unknown performance without
practical experiments.

As botnets can be automatically evolved as different localized versions in a short
period of time, how to find an effective and efficient approach to detect and notify the
botnet attack becomes an important and challenging problem. To cope with the prob-
lem, Tseng et al. [2011] propose a collective intelligence approach that aims to enable
the systematic and dynamic creation of malware information and knowledge. Accord-
ingly, they have developed an anti-botnet platform together with a social networking
structure, and an anti-botnet service web site, where the collaborative anti-botnet plat-
form is used to collect the botnet attack information through the honeypot deployment
of different organizations and the proposed social networking structure can help build
the consensus to select the attributes of the botnet. The collected data can be then sent
to the anti-virus software vendor to develop the antidote that can be freely downloaded

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:19

by the infected internet users. The paper has elaborately explained the normalization
and effectiveness mentioned in the previous work [Wang and Gong 2009].

Although the research on detection of botnets has been conducted for over 10 years,
no one can provide comprehensive botnet detection, fulfilling all of the detection re-
quirements and providing a foundation for successful defence against modern botnets.
ContraBot is introduced by Stevanovic et al. [2012], which has raised detection of bot-
nets into a systematical level. However, it also has its limitation. The theory is based
on the scientific hypothesis that correlating the observations and analyzes from client
and network entities will significantly improve the botnet classification ability. Never-
theless, counterfeit observations or fake analyzes, without filtering, may degrade the
performance of classification to some extent.

Botnets may range from thousands to millions, it is most likely to lead to congestion
of networks when detecting bots. Houmansadr et al. [2012a] propose a low-cost col-
laborative network watermark to address the aforementioned problem. The approach
is implemented into BotMosaic, and it marks command and control messages by in-
serting a particular pattern into the bots’ network traffic; hence, bots are prone to be
recognized by clients with much lower cost. In a collaborative community, the impact
of the approach can be amplified, which can easily find bots in the network and avert
further attacks.

Summary: To sum up, there are two fundamental approaches for botnet detection:
detect anomalies in hosts, for example, exposing sensitive information and arbitrarily
accessing networks; on the other hand, bots require commands from controller or other
peers, which have the similar format and features. So it can help to detect botnets
by analyzing network traffics. In the five works we investigated, Malan’s work [2007]
is typical of detecting anomalies in hosts. The snapshot server gets similarities of
behaviors gathered from peers and can decide which behaviors are anomalous and
subsequently find the bots. However, BotMosaic [Houmansadr and Borisov 2012a] is
impressive to interpolate network traffic and then track the bots by proliferation with
collaboration. Wang and Gong [2009], Tseng et al. [2011], and Stevanovic et al. [2012]
employ both approaches and largely focus on the collaboration to raise the accuracy
of detection. As shown in Figure 2, host anomalies and network traffic (denoted as
message 1©) can be captured by the detection unit and sent to the collaboration unit
for further detection. Nodes in the network are collaborating by sharing their verdicts
(denoted as message 2©). Using the shared information, the decision unit can carry out
further analysis and finally find the bots.

6. TAXONOMY OF COLLABORATIVE SECURITY

The previous section presents a great variety of collaborative security. In this sec-
tion, we give seven principles for the taxonomy, covering analysis target, timeliness
of analysis, architecture, network infrastructure, initiative, shared information, and
interoperability.

6.1. Analysis Target

Collaborative security varies from analysis target to detect different attacks and intru-
sions. In this subsection, we distinguish collaborative security by the source of collected
information.

6.1.1. Host Information. Collaborative security systems detect intrusions and attacks
by monitoring and analyzing the internals of hosts. It can monitor both dynamic be-
haviors and static states of the system. The information gathered from hosts can be
intrusions [Albers et al. 2002], attacks [O’Donnell and Prakash 2006], or patterns of
spam [Wong 2006; Zhong et al. 2008; Lai et al. 2009]. After analyzing and correlating

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:20 G. Meng et al.

Fig. 3. Timeliness of analysis. Fig. 4. The taxonomy of architectures.

the information, we can conclude that host information is mainly used for finding
out host-aimed attacks (e.g., probing sensitive information in hosts, exhausting the
resources of hosts and getting unauthorized permits to some critical components), or
helping other hosts better to detect malicious behaviors and be aware of attacks.

6.1.2. Network Traffic. Contrary to host information, another approach is to collect net-
work traffic (i.e., network packets) for detecting malicious activities in the network.
The monitor is usually deployed in firewalls or routers and can capture and prepro-
cess the primary packets. The security issues concluded from network packets consist
of a blackhole attack in routing [Patcha and Mishra 2003], identification of malicious
nodes [Krontiris et al. 2009], and detection of botnets [Houmansadr and Borisov 2012a,
2012b].

6.2. Timeliness of Analysis

In the environment of collaborative security, some systems may need to get the analysis
results immediately and take countermeasures against attacks. Nevertheless, the oth-
ers are deemed to be not demanding for timeliness of analysis results and they do not
need to wait for the timely results to execute. It rests on the frequency of attacks, the
complexity of detection and capabilities of nodes. More frequent attacks, less complex
attacks and more capable nodes can lead to utilizing an immediate analysis and vice
visa. The sketch of the timeliness is shown in Figure 3.

6.2.1. Offline Analysis. Offline analysis is more like that the security-related informa-
tion travels in one way. The initiator sends the security-related information to others
and does not need to wait for the results. Afterward, there should be some nodes who
take the responsibilities for analyzing the information. In SmartSiren [Cheng et al.
2007], mobile devices are responsible for submitting logs of behaviors to the central
server periodically and do not need to wait for the analysis results from the central
server. The central server will process, aggregate, and correlate these logs, and detect
some potential attacks. In other literature [Wong 2006; Agarwal et al. 2010; Oliner et al.
2012; Stevanovic et al. 2012], offline analysis is conducted while nodes are continuing
their job without being blocked by the analysis results.

6.2.2. Online Analysis. In some collaborative security systems, collaborative efforts will
immediately turn to analysis results (by synchronization). Nodes that launch a cooper-
ative operation will wait for the analysis results. As in the collaborative identification
of malicious nodes, the collaborative operation will not get to its end until they find out
the comprised nodes [Patcha and Mishra 2003; Krontiris et al. 2009; Zhou et al. 2009].
The phenomenon also occurs in collaborative anti-spam systems. In ALPACAS [Zhong

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:21

et al. 2008; Li et al. 2009], suspicious spam is spread during the collaboration, and the
initiator tries to gather the feedbacks from other and finally makes a decision.

6.3. Architecture

Communication and networks are inevitably brought in by collaboration. Peers are
connected by some kinds of medium and can communicate to accomplish a specific
task. The architecture of collaborative security indicates in which scheme peers are
organized and connected and the way they communicate. A summary of architecture
is shown in Figure 4.

6.3.1. Centralized. In the centralized architecture, there is usually a central server
that is responsible for listening to, communicating with, and ordering peers. Accord-
ingly, the peer-to-peer communication is scarce and restricted. As a consequence, the
centralism can benefit global analysis because the central server has overall infor-
mation produced by each peer. Given that, it can tremendously guarantee the accu-
racy and correctness of analysis. However, the centralism also produces some side
effects: (1) the traffic related to the central server will linearly increase as the num-
ber of nodes in the network, thus can inevitably degrade the performance of the
central server. In a nutshell, it can decrease its scalability. (2) The centralized ar-
chitecture is at a high risk of single point of failure. Once the central server ceases
to work (e.g., attacked by hackers), the security unit in each node definitely cannot
continue to work normally; subsequently, the whole network may undergo heavier at-
tacks and finally crash. The collaborative security systems that use the centralized
architecture include Yu et al. [2004], O’Donnell and Prakash [2006], Agarwal et al.
[2010], Sirivianos et al. [2011], and Cha et al. [2011]. Especially, malware detection
in mobile devices usually employs the centralize architecture shown in Cheng et al.
[2007], Agarwal et al. [2010], and Oliner et al. [2012]. The centralized architecture
specifies the flow direction of security-related information, that is, transmission of
security-related information occurs in the communication channels between the cen-
tral server and each node. On the other hand, the centralized architecture conveys that
the type of security-related information is mainly the raw data or partially processed
data.

6.3.2. Decentralized. Disparate with the centralized architecture, the decentralized ar-
chitecture is of the peer-to-peer form. Every node in this network has the same functions
and capabilities; hence, every node plays the same role in collaborative security. Ap-
parently, the decentralized architecture can absolutely avert single point of failure.
Furthermore, the autonomy and self-organization make it more scalable. However, the
disadvantages of this architecture are threefold: (1) Without a central mediator, dis-
tributed nodes will carry only portion of knowledge, which can reduce the accuracy of
the detection. (2) The overhead of networks will increase quadratically as the number
of nodes. As more and more nodes join the collaboration, the information exchanged
among these nodes can be dramatically raised; hence, it may cause high latency of net-
works. (3) The architecture is, somewhat, influenced by the effect of churn. In an open
network, nodes can independently join or leave. In such cases, each node should either
renovate its knowledge or calculate the relationship with new comers, respectively;
otherwise, security actions may be impacted.

The systems using the decentralized architecture can be found in Zhang et al. [2003],
Janakiraman et al. [2003], Zhong et al. [2008], Marchetti et al. [2009], and Krontiris
et al. [2009]. The decentralized architecture defines that the flow direction of security-
related information is arbitrary and bidirectional among the peers. Since each node
is assigned with more analysis work, the exchanged information (e.g., directives and
knowledge) will be more fledged and processed.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:22 G. Meng et al.

Table II. Comparison in Characteristics among Different Architectures

Architecture Accuracy Scalability Complexity Risk of Crash
Centralized High Low Low High
Decentralized Low High Medium Low
Hierarchical High Medium High Medium
Hybrid Medium High High Medium

6.3.3. Hierarchical. To some extent, the hierarchical architecture is a tradeoff between
the centralized architecture and decentralized architecture. It combines centralized
and decentralized architectures to remedy respective shortcomings. In a hierarchical
architecture, security-related information is collected by the base nodes and transmit-
ted into respective parent. Usually, the flow direction is unidirectional from bottom
to up. Taking DOMINO [Yegneswaran et al. 2004] as an example, there are two main
kinds of nodes in the architecture, axis nodes and satellite nodes. Axis nodes, the minor-
ity of nodes, are pivot because they are the backbone of the architecture. Axis nodes can
exchange information peer to peer. Furthermore, they are parents of satellite nodes.
An axis node and many satellite nodes form a tree-structured community in which
security-related data is always transmitted to the parent. Nevertheless, the challenge
in the front of the hierarchical architecture is how to balance the number of nodes in
different layers in order to maximize the performance and the effect.

6.3.4. Hybrid Decentralized. The hybrid decentralized architecture is a more complex
format of decentralized architecture. In the decentralized network, we divide nodes
into several communities under a specific principle. For instance, in CIMD [Bye and
Albayrak 2008; Schmidt et al. 2008, 2009], part of nodes are required to form a group
that is interest based to refine the function of the group. In Kachirski and Guha
[2003], Huang and Lee [2003], and Luther et al. [2007], all nodes are divided into
clusters that are distance-based to reduce the overhead of communication among all
the nodes. Kong et al. [2006] propose to group nodes based on email contacts, which has
already integrated trust in social networks. Moreover, the accuracy of detection and
algorithms for formation are the two primary challenges in the hybrid decentralized
architecture.

Finally, we present a clear comparison in characteristics (i.e., accuracy, scalability,
complexity and risk of crash) of different architectures in Table II. In the table, every
characteristic can be assigned with Low, Medium, and High, denoting different levels
for each architecture.

6.4. Network Infrastructure

Collaborative security can be used in different networks. In different types of networks,
the communication medium and nodes vary a lot. The distinct characteristics of net-
works can also lead to varied bandwidth or payload capacity. Hence, it will impact the
type of exchanged data as well as technologies and algorithms of security detection
running in each node.

6.4.1. Wired Network. In the wired network, interconnected nodes have plenty of com-
puting power, storage and high-speed bandwidth. Therefore, physical constraints and
polynomial overhead of traffic cannot attract security analysts’ attention, and the nodes
can perform relatively more complex functions and tasks. Generally, security policies
in wired networks are apt to detect sophisticated attacks (e.g., distributed attacks) or
filter spam, such as Indra [Janakiraman et al. 2003], DOMINO [Yegneswaran et al.
2004] and Worminator [Locasto et al. 2005]. The main problem for collaborative secu-
rity in wired networks is how to leverage abundant resources and shared information

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:23

to maximize the accuracy of the detection and carry out an in-depth and thorough
analysis.

6.4.2. Wireless Network. The nature of wireless networks (e.g., MANET and Wireless
Sensor Network (WSN)) makes them susceptible to intrusions and attacks. The char-
acteristics of wireless networks that are attack-prone are fourfold [Zhang et al. 2003]:
(1) The electromagnetic signal through the wireless links is easier to be intercepted.
Once it is captured by the attacker, it will be likely to cause sensitive information leaks,
message contamination, and node impersonation. (2) Mobile nodes that are autonomic
and lack adequate physical protection are susceptible to being captured, compromised,
and hijacked. (3) Without centralized authority, it may be vulnerable to some attacks,
which will disturb the decision-making process. (4) The computing activities are re-
stricted by limited bandwidth, higher consumption, and energy constraints. In addi-
tion, disconnected operations and location-based operations both emerging in mobile
wireless environment propose a new challenge for collaborative security.

Due to the restriction of MANET networks, the literature [Albers et al. 2002; Huang
and Lee 2003; Zhang et al. 2003], as investigated in our survey, adopts some elab-
orate techniques or shortcuts to reduce the communication and analysis overhead
when detecting intrusions. Some other papers [Cheng et al. 2007; Schmidt et al. 2009;
Agarwal et al. 2010; Oliner et al. 2012] are concentrating on solving security issues
in mobile devices (e.g., detecting malware and buggy applications). Also, many works
[Undercoffer et al. 2002; Sarma and Kar 2006; Pathan et al. 2006; Sharma and Ghose
2010] have been found using collaborative security to solve such kinds of attacks.

6.5. Initiative

In this subsection, we divide collaborative security mechanisms into active collabora-
tion and passive collaboration. Nodes in active collaboration may volunteer to execute
some security actions with others. The security actions can be predication of one in-
trusion, identification of a malicious node, or detection of collaborative attacks. On
the other hand, nodes in passive collaboration prefer to stay static unless there are
some requirements for sending own information (e.g., intrusion and attacks in local
database) or receiving new information of intrusion and attacks from others. Also, we
can distinguish these two mechanisms based on the shared information. There are
more directives and raw (or partially processed) data exchanged in active collaboration
because they need to confirm attacks by collaboration. Nevertheless, passive collabora-
tion intends to share less directives and more fledged security-related information to
enrich the local knowledge. Most of analysis work is carried out in an individual node;
therefore, the communication will be less frequent comparing to active collaboration.

6.5.1. Active Collaboration. In the active mechanism of collaborative security, nodes are
eager to contribute themselves to determine intrusions and attacks. As described in
Zhang’s work [2003], any node that cannot confirm an attack can launch a cooperative
way to ask other nodes to give a feedback (i.e., a mere level-of-confidence value to the
suspicious attack) about it. Then the host node can calculate based on the feedback
to eventually decide whether it is an attack. With the same purpose as Zhang, the
collaborative malware detection system in mobile devices proposed by Schmidt
et al. [2009] is also in an active mechanism. One mobile device will take a lead to
form an interest-based group. Then the members in a group can collaborate to detect
some malware existing in mobile devices.

6.5.2. Passive Collaboration. Sharing information and detection of attacks are two
stand-alone processes in passive collaboration. The shared information generally con-
sists of latest attack or intrusion updates. Based on the information, local intrusion

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:24 G. Meng et al.

detection system can accurately and effectively detect suspicious behaviors or activi-
ties. DShield [2013] is a kind of knowledge base from which IDS can acquire intrusion
information. The IDSs that just enhance their abilities by synchronizing intrusion in-
formation with DShield are acting in a passive manner. Indra [Janakiraman et al. 2003]
is a peer-to-peer system that also acts passively. Although the participants would like
to share with each other the information of latest intrusions upon detecting them, we
still classify it as the passive collaboration because it fails to provide the further anal-
ysis. Each node works as a disseminator to send and passively receive security-related
information.

6.6. Shared Information

Information sharing is deemed to be the most significant feature of collaborative se-
curity. No matter monitoring, analyzing, or decision making, one participant should
send information, in a variety of formats, to notify others to perform. Meanwhile, the
information has different destinies, either stored as a knowledge base or processed as
the input for further analysis. According to this principle, we have categorized shared
information in collaborative security into three classes in the following.

6.6.1. Raw Data. Nodes have no ability to determine attacks, spam, or malware; in-
stead, they turn to send raw data gathered by themselves to other more powerful nodes
for further analysis. The loss of abilities may be caused by limited resources, deficient
knowledge, or tactical consideration. On the other hand, it is no doubt that sharing
raw data will worsen the overload of the network and the analysis node due to its
redundancy and raise the frequency of exchange due to less filter and process. We have
statistically summarized the raw data shared in collaborative security as follows.

—Suspicious Nodes. According to Krontiris et al. [2009], nodes share blacklist of suspi-
cious nodes to identify malicious nodes. Similarly, in the Worminator system [Locasto
et al. 2005], IP addresses, which are suspected to behave subversively, are reported
for identifying attackers. Phishing domains and associated IP address list are ex-
changed among detection units in Zhou et al. [2009].

—Suspicious Attacks or Intrusions. If one behavior occurring in a host or network is
detected as a suspicious attack or intrusion, it will be directly shared in the network
for identification [Bye and Albayrak 2008].

—Environmental Data. Usually, it is collected from physical environments. In MANET
and WSN, network overhead and distance between nodes can be shared and used for
the formation of clusters to make the system cost-effective in monitoring [Cardone
et al. 2011]. On the other hand, the usage of resources, for example, neighbours’ as-
signed channel for monitoring, loads and time allocation, will be shared in Mesh net-
works with the purpose of reducing the overall overheads. Additionally, Carat [Oliner
et al. 2012] collects and shares power usages of different applications for detecting
energy bugs.

—Behavior Logs. SmartSiren [Cheng et al. 2007] and MobiBug [Agarwal et al. 2010]
are both concerned to send information about behaviors logged by mobile phones
to the central server, either examining whether there is an attack or determining
whether the application has bugs. Especially, the behaviors of applications on mobile
phones include sending messages to the network, accessing the inner resources,
crash details, and so forth; a snapshot of suspicious behaviors are collected in Malan
[2007].

6.6.2. Partially Processed Data. In this case, the capabilities of nodes have been consid-
erably improved, and nodes can exploit available resources to carry out some further
analysis. Additionally, there may be some requirements for reducing the amount of

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:25

abundant information. As a result, the frequency of exchange is lower than sharing
raw data and the data is more organized. After all, nodes are reluctant to face tremen-
dous data, which can definitely degrade their performance. As the result, the data is
partially processed before sent to other nodes.

—Confidence Value. In Zhang et al. [2003], if one node cannot confirm whether one
activity is an intrusion, it will share the state information of this suspicious behavior
and wait for the opinions of other participants. In Krontiris et al. [2009], every node
will vote for suspicious attackers in order to locate them by calculating the votes.
The suspect counter is the basis of calculation for determining attackers which is
exchanged among nodes [Pathan et al. 2006].

—Feature Set. As presented in Huang and Lee [2003], the feature set can be extracted
from one suspicious behavior. Then it is shared for further analysis. The counterpart
in anti-spam systems could be a transformed feature set of suspicious emails [Zhong
et al. 2008] or shingle features of spam and ham [Shi et al. 2011]. In Schmidt et al.
[2009], each mobile phone first carries out static ELF analysis then extracts feature
vectors from the output to share. ContraBot [Stevanovic et al. 2012] is one of typical
botnet detection systems that filters and preprocesses feature data in advance to
improve effectiveness and scalability.

6.6.3. Processed Data. Comparing to the first two kinds of data, processed data is the
final product produced by security systems. It could be a confirmed attack, an identified
malicious node, confident spam, or sheer malware. Since the time of processing data is
relatively long and each node can take up most of detection work individually, there is no
need to frequently exchange data. Instead, peers only attempt to share the information
when necessary. The processed data that are commonly seen in collaborative security
is listed as follows.

—Confirmed Intrusions and Attacks. In the DOMINO [Yegneswaran et al. 2004] sys-
tem, every node can summarize the recent attacks and intrusions then share them
with others. The same situation can be also found in other systems [Albers et al.
2002; Janakiraman et al. 2003; Luther et al. 2007; Tseng et al. 2011]

—Alerts/Correlation Results. Alerts generated in intrusion detection systems are
shared as well as the correlation results of them, as described in Yu et al. [2004]
and Marchetti et al. [2009]. It can facilitate to find more real and sophisticated
attacks, which an individual node cannot afford.

—Spam. For anti-spam systems, sharing spam is a straightforward way to filter spam.
Spam can be expressed in a variety of formats like spam patterns [Kong et al. 2006],
spam rules [Lai et al. 2009], PGP-encoded spam messages [Wong 2006], and spam
reports [Sirivianos et al. 2011].

6.7. Interoperability

Interoperability is the ability of collaborative systems to work together with informa-
tion exchange [Wikipedia 2014]. It defines the mechanism for collaborative systems to
communicate, which is either a normalized format for exchanged data, or a commu-
nication protocol, or even a complete framework, which describes the communication
mechanism between collaborative security systems [Bye 2013]. It is an indispensable
but uninspiring feature for collaborative security systems. System designers have to
propose a communication mechanism between systems, but oftentimes, they are used to
leverage existing standards or frameworks to implement, which is not their main con-
cern. We have investigated and summarized the employed approaches in the literature.
For simplification, we classify them into two categories, standard and customized com-
munication. The standard communication means systems employ the de facto standard

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:26 G. Meng et al.

Table III. The Statistics of Standard Communication

Standard Type Description System
CIDSS Data Format Common Intrusion Detection Signature

Standard aims to provide a common data
format for intrusion signatures

Bye and Albayrak [2008]

ClamAV Data Format It is an open-source anti-virus engine that
has uniform and consolidated data format
for virus

Cha et al. [2011]

DARPA Data Format DARPA owns a public dataset for
intrusion detection evaluation

Xu and Ning [2005]

Enron &
Bruce
Guenter

Data Format Publicly available email corpuses of both
spam and ham

Sousa et al. [2010]

IDMEF Data Format Inrusion Detection Message Exchange
Format is a standard for data format
during the exchange process between
IDSs

Albers et al. [2002],
Yegneswaran et al. [2004],
Duma et al. [2006],
Luther et al. [2007], Bye
and Albayrak [2008],
Pérez et al. [2011], and
Czirkos and Hosszú [2012]

IODEF Data Format Incident Object Description Exchange
Format defines data formats for
operational and statistical incidents for
exchange

Bye and Albayrak [2008]

TREC &
Assassin

Data Format Publicly available email corpuses of both
spam and ham

Zhong et al. [2008]

IDXP Protocol Intrusion Detection Exchange Protocol
defines the procedure of data exchange
between IDSs

Albers et al. [2002]

JXTA Protocol Juxtapose is a peer-to-peer protocol
specification for collaborative systems to
exchange messages

Duma et al. [2006]

DHT Framework Distributed Hash Table provides a data
storing and quickly lookup service for
collaborative systems

Locasto et al. [2005],
Marchetti et al. [2009],
and Czirkos and Hosszú
[2012]

MEET Framework Multiply Extensible Event Transport
provides a publish-subscribe
infrastructure for scalable and effective
communication

Gross et al. [2004]

Scribe Framework A large-scale and decentralized multicast
infrastructure for communication of
collaborative systems on application level

Janakiraman et al. [2003]

WordPress Framework Plugins on WordPress can setup a channel
for different websites to share data

Wong [2006]

in industry to accomplish collaboration, while the customized communication means
systems have designed their own specification for communication.

6.7.1. Standard Communication. There are some standard specifications for interoper-
ability between collaborative systems. These specifications have been widely used in
industry or academia. For example, the Intrusion Detection Message Exchange Format
(IDMEF) is one standard that defines data formats for intrusion information between
IDSs [Yegneswaran et al. 2004]. TREC is an email corpus that collects thousands of
spam and ham emails and is used for spam detection evaluation [Zhong et al. 2008].
Table III summarizes all standards employed in the surveyed collaborative security
systems, consisting of the corresponding specification type, a brief description, and
relevant literature.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:27

6.7.2. Customized Communication. Many collaborative security systems employ cus-
tomized mechanisms to accomplish communication. For instance, Lincoln et al. [2004]
design a customized data format for alerts and propose an alert sharing infrastructure
for communication between IDSs; [Kong et al. 2006; Sirivianos et al. 2011] propose cus-
tomized formats for spam features acknowledged and employed by anti-spam systems;
SmartSiren [Cheng et al. 2007] is a proposed framework that defines a data exchange
format including message content and its hash value, and it provides cheating preven-
tion and privacy protection for collaborative systems.

In addition, there are works that do not mention interoperability. For example, Fung
[2011] aims to reveal insider attacks in CIDSs and the significance of robustness. It
also proposes mitigations for these insider attacks; Zhu et al. [2012] addresses the
incentive challenge generally existing in collaborative systems without describing in-
teroperability in between.

To summarize this section, we list the detailed taxonomy classification for the col-
laborative security systems mentioned in Section 5 in Table IV. The table covers 44
collaborative systems ranging from 2003 to 2012. The number of each taxonomy are
summed for each type of security systems as well as for all systems. In the next sec-
tion, we will give a comprehensive discussion based on the investigated systems and
taxonomies in Table IV.

7. DISCUSSION

This section is devoted to the discussion of the collaborative security systems and
taxonomies from three perspectives. First, we build a linkup between collaborative
security systems and security threats. Second, we draw conclusions from the obser-
vations of Table IV. Third, we try to reveal the relations of different taxonomies. We
hope that readers could use these findings to guide the development of future collabo-
rative security systems.

7.1. Linkup with Security Threats

From the investigated collaborative security systems, we identify 10 kinds of security
threats, as shown in Section 4, which are prevented or detected by these systems.
Table V shows the more detailed correlation between systems and threats. The princi-
ples of linking up these systems and threats can be concluded as:

—For general attacks, such as intrusion and malware, we summarize some typi-
cal threats from the surveyed literature and the common taxonomy for them (see
Section 4). For example, malware has multiple types of malicious behaviors. It may
expose users’ sensitive information or elevate its privilege to execute malicious code.
Therefore, we put all typical threats that malware can cause in this table.

—A botnet comprises of a large number of connected computers, which can launch
other attacks in a large scale. Due to its distributed and tremendous features, it
can easily launch DDoS attacks and disseminate spam. In addition, stealing users’
information is an auxiliary attack, which can quickly collect information for further
attacks.

7.2. Observations of Collaborative Security

From the statistics Table IV, we highlight five findings in the following.

7.2.1. Centralized Architecture Dominates in CMDS-MD. Three fourths of the literature we
summarized apply the centralized architecture in malware detection on mobile de-
vices. The reason is that a single node cannot independently complete one complicated
task; instead, they are usually contributing to collect information or carry out partial
work such as filtering out useless information, extracting unique features, and making

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:28 G. Meng et al.

Table IV. Statistics of Collaborative Security

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:29

Table V. The Correlation between Systems and Threats

System Threats
Collaborative Intrusion
Detection

privacy leakage, privilege escalation, authentication
violation, denial of service, malicious code execution,
abuse of functionality and resource depletion

Collaborative Anti-Spam spam
Collaborative Anti-Malware
Detection (Mobile OS)

privacy leakage, privilege escalation, authentication
violation, malicious code execution, abuse of functionality
and resource depletion

Collaborative Identification of
Malicious Nodes

deceptive interaction and routing trap

Collaborative Detection and
Resistance of Botnets

privacy leakage, spam and denial of service

decisions based on own knowledge. In this case, more complicated and time-consuming
analysis is conducted by the central server.

7.2.2. Collaborative Security is Badly Needed in Wireless Networks. In particular, collabora-
tive security is badly needed in MANET and WSN, in which bandwidth is relatively low,
energy is insufficient, storage is deficient, and computation capability is limited [Zhang
et al. 2003; Huang and Lee 2003; Cheng et al. 2007; Oliner et al. 2012]. Thereby, col-
laborative security in MANET and WSN would focus more on how to remedy issues
introduced by resource limitation and improve effectiveness and scalability. However,
traditional collaborative security puts it as the key on how to improve accuracy and
detect more sophisticated attacks.

7.2.3. Active Is More Popular Than Passive. Active collaborative security can easily attract
more analysts’ attention because it always takes a lead in actively probing and detecting
attacks or anomalies. As shown in Table IV, 26 papers adopt an active mechanism for
collaborative security, where the active collaboration has a notable edge on the number.
Apparently, it is a more secure mechanism when comparing to passive collaborative
security, considering that the active mechanism is to confirm an attack together rather
than individually. Passive collaborative security advocates to detecting attacks based
on local knowledge. Although it can update its knowledge periodically by acquiring the
information of new attacks from else nodes, it still confronts many risks. The loss of
abilities of recognizing new attacks (e.g., zero-day) renders the system infectious for
a long time. In addition, active collaborative security can effectively find out attacks
in advance with innovative techniques, for example, sufficient collaborative analysis,
succinct information exchange for increasing performance and scalability and enough
detection accuracy for reducing the false-positive rate.

7.2.4. Remarkable Differences of Shared Information in Different Systems. According to our
statistics, CIDS, CASS and CAMS systems tend to share processed information. Nev-
ertheless, the share of raw information often occurs in CIMN and CMDS-MD systems.
The occurrence of the diversity largely depends on the analysis capacity of single
node, the timeliness of analysis, and the coupling feature among these systems. Take
anti-spam systems as an example. Once an email server receives an email, the server
should deliver the email to the specific recipient immediately. Collaboration for dis-
cerning spam among multiple servers may lead to a considerable delay. Obviously, the
recipient would rather receive a portion of spam than wait many seconds (even min-
utes) to collaboratively determine whether the email is spam, especially emergency
emails. As a consequence, the email server tends to utilize extant algorithms to de-
tect emails based on known spam patterns, which are processed data shared by email
servers.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:30 G. Meng et al.

7.2.5. Benefits from Sharing Partially Processed Data. Though the proportion of sharing
partially processed data is not very large, it has demonstrated a trend of collaborative
security. Most of relevant literature occurs after 2008, and there are some notable
advantages [Zhong et al. 2008; Schmidt et al. 2009; Li et al. 2009]: (1) It cannot only
address the issues of information redundance with the first option (i.e., sharing raw
data) but also be equipped with abilities of being aware of new attacks which are
lacking in the third option (i.e., sharing end data). (2) It can help to preserve individual
privacy since encryption or hash scheme can be employed in the preprocess, eliminating
sensitive information. (3) It can effectively alleviate the pressure of resource for each
node, especially in MANET and WSN, without an energy-consuming and in-depth
analysis.

7.3. Correlation Analysis between Taxonomies

To have a better understanding of the collaborative system design, it is useful to
reveal the (hypothetic) relationships between the taxonomies. For example, we find
that the systems with centralized architecture usually conduct an offline analysis.
These relationships could be potentially useful when the system designer needs to
decide what taxonomies to use.

In this work, we use conditional probability to express these relationships. Condi-
tional probability can illustrate the statistical independence between two categories.
In particular, the larger conditional probability is between two categories, the more
dependent and stronger the relationship between them should be. Therefore, we can
dig out more significant and valuable features for the design of collaborative secu-
rity systems. Given two categories X and Y of different taxonomies (e.g., centralized
and active), the percentage of being of category Y for which are of category X can be
obtained by:

P(X|Y) = NUM(X ∩ Y)
NUM(Y)

,

where NUM(X ∩ Y) denotes the number of systems that are both of category X and Y ,
and NUM(Y) is the number of systems that are of category Y . For example, according to
the table, we figure that 73% of wireless systems have employed an active mechanism.

Based on the data in Table IV, we identify correlation values between different
taxonomies. And we obtain some interesting observations and selectively draw them
in Figure 5, where the size of each node is related with the frequency of occurrence in
our survey, and Y

p−→ X means P(X|Y) = p. According to the figure, we have following
highlights:

—Most of systems (86%) with centralized architecture have conducted an offline anal-
ysis. Obviously, the central server has abundant collected data and powerful compu-
tational resources to carry out some heavyweight analysis.

—A large portion of systems (71%) of hybrid architecture take an active mechanism
considering that they usually form several groups and collaboratively make decision.
As a security unit, the group in hybrid architecture would like to collaboratively make
security decisions by actively sharing information or assigning security tasks.

—Wireless systems prefer sharing raw and partially processed data (82% in total) due
to the limited computational resources. Moreover, the active mechanism is the first
option (73%) through collaboration among wireless systems. We infer that since nodes
in wireless networks lack enough security evidences and computational resources,
they turn to launch an active collaboration to make security-related decisions.

—According to our observations, collaborative security systems that take a passive
mechanism are often built on a decentralized architecture (50%), sharing processed

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:31

Fig. 5. Relationships between different taxonomies.

data (89%), and conducting an offline analysis (94%). Usually, the systems which
take a passive mechanism have a relatively powerful computational ability, and can
individually detect attacks. Collaboration means to them more abundant data, spe-
cially processed data, for further analysis. In addition, the decentralized architecture
guarantees the information can be sufficiently shared between these nodes.

—Sharing raw (92%) or partially processed data (88%) can infer that the system likely
uses an active mechanism. It is especially common in collaborative identification of
malicious nodes, which share raw or partially processed data and actively find out
the attacker.

—Processed data is of a relatively mature format of intrusions and attacks. It can
be shared between different security systems in which heavyweight analysis (e.g.,
correlation analysis) can be performed. Meanwhile, security systems that perform
offline analysis usually (88%) share processed data. It makes sense because systems
taking offline analysis often carry out a further analysis on known attacks and
intrusions. By sharing processed data, each node can acquire enough information for
the analysis.

—Online analysis often needs a decentralized topology (50%) and employs an active
mechanism (92%). The nodes of online analysis equally play a role in collaborative
security, which can lead to a decentralized topology. In addition, as analysis results
should be immediately returned to the initiator, these security systems should ac-
tively acquire information from each other and conclude a final result.

—In addition, systems employing a customized mechanism of interoperability likely
share raw data (85%) for their customized security analysis; and processed data
shared between systems usually follows a standard specification (79%) for ease of
communication and participancy of other security systems.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:32 G. Meng et al.

8. CHALLENGES

In this section, we summarize five major challenges in designing a collaborative secu-
rity system. In the surveyed literature, these five challenges are typically mentioned
as pivotal aspects to improve and enhance collaborative security systems by many
works. Although the aforementioned works may attempt to (partially) solve some of
these challenges, there is a need to systematically describe key issues of collaborative
security systems and existing approaches. In the following, we will give a detailed
description for these challenges, and then provide a schematic summary.

8.1. Privacy

Sharing information is a prerequisite procedure in collaborative security. One node
either needs information of attacks and anomalies acquired from others to enrich its
local knowledge, or needs to exchange some metadata to complete a detection task. In
this case, some confidential information may be leaked unintentionally. Restricting the
exposure of information, however, can contradictorily reduce the detection accuracy
and increase false positives as well as false negatives. To the best of our knowledge, we
have summarized the techniques in these works and categorized them into six classes
in the following.

—Basic Preservation. Lincoln et al. [2004] solve the problem of privacy preservation
in alert correlation. By scrubbing or hashing sensitive fields (e.g., IP addresses and
ports), it can protect against privacy leakage. The approach is simply operated;
however, it reduces accuracy to a great extent.

—Concept Hierarchies. To complement the first approach, Xu and Ning [2005] propose
a privacy-preserving alert correlation approach by introducing concept hierarchies.
The concept hierarchy is built on the abstraction of alert attributes. Sensitive at-
tributes can be replaced by their upper level concepts. To minimize the uncertainty
of generalization, they employ similarity functions to measure the probability of one
real attack based on the provided alerts.

—Bloom Filters are used in several papers [Gross et al. 2004; Locasto et al. 2005] to
preserve privacy during sharing information. Bloom is a one-way data structure that
one can hash plain text to avoid, however the reverse.

—Ticket Exchange is the measure to protect privacy in SmartSiren [Cheng et al. 2007].
Ticket is the unique identifier distributed by the central server and used to digest
the security reports. By exchanging tickets between two nodes with the assistance of
the central server (but the central server does not know exactly which the two nodes
are), the two nodes can submit reports periodically in an anonymous manner.

—Z-String is another one-way data structure employed in privacy preservation [Wong
2006]. It statistically sums up every character occurring in comments and produces
statistical results for exchanging.

—Differential Privacy, which provides means to maximize the accuracy of queries from
the statistical database while minimizing the changes of identifying its records, can
also be used to in collaborative security [Reed et al. 2010].

Table VI summarizes the different approaches in privacy preserving. It is worth men-
tioning that effectiveness and accuracy can be assigned with Low, Medium, and High,
denoting different levels for each property. In this investigation, it proves to be critical
for collaborative security and the proposed approaches may more or less have some
shortcomings in dealing with this dilemma. As a consequence, it raises a problem how
to preserve the privacy of users and meanwhile retain the important features of infor-
mation to guarantee the accuracy of detection. Basic preservation adopts the primary
measures to eliminate and remove sensitive information, and it is very effective and

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:33

Table VI. Different Approaches of Privacy Preserving

Approach Literature Effectiveness Accuracy
Basic Preservation Lincoln et al. [2004] High Low
Concept Hierarchies Xu and Ning [2005] Medium Medium
Bloom Filter Gross et al. [2004] High Medium

Locasto et al. [2005]
Ticket Exchange Cheng et al. [2007] Low High
Z-String Wong [2006] High Low
Differential Privacy Reed et al. [2010] Medium High

simple. However, it removes many important features, which can be very pivotal in de-
tecting or analyzing attacks. Concept hierarchies, as the privacy-preserving measure in
alert correlation, is actually an abstraction of sensitive information, for example, using
Gateway/Mask representation to represent an IP address. But it requires to refine the
abstraction process against false positives or negatives. Bloom filter, as a space-efficient
probabilistic data structure, can protect privacy with low false positives, even though
it is also restricted by the self-constraints. For example, it does not support modify and
delete operations. Ticket exchange is a relatively consuming technique, which should
distribute lots of tickets and help to exchange. Z-String is a very simple statistical
approach in terms of letters. Effective as it is, it has a relatively low accuracy. Differen-
tial privacy can increase the accuracy of queries from statistical databases as much as
possible without identifying their records. But the applicable range is relatively small
and needs more efforts in the database side. In summary, preserving privacy is still
a challenging issue in collaborative security, particularly how to find a good tradeoff
between effectiveness and accuracy.

8.2. Accuracy

Accuracy is an essential property of security systems, and the objective where we bring
collaboration into security systems is largely to make detection and analysis results
more accurate. However, there are mainly two hurdles to affect the accuracy. First,
privacy preservation can veil some features so that it will reduce the accuracy. For
instance, the application of Bloom Filter will hide the real content of the information,
hence can produce false positives. Second, the employed approach to analyze the col-
lected information may vary, especially in accuracy. Unsound and biased criteria of
judgement may lead to low accuracy in practice. Therefore, adopting an appropriate
approach for privacy preservation and sufficient analysis against the information can
increase the accuracy of detection. As a consequence, what to share and how to use are
two essential problems in designing and developing collaborative security systems.

8.3. Scalability

To determine whether a collaborative security system is applicable for larger networks
with more nodes or not, the following two aspects need to be designed carefully:

—Communication amongst nodes. The increment of the number of nodes inevitably
causes the overload of networks and longer reaction time since they need to send
more information and wait for the response. High-latency networks and inappropri-
ate network topologies will exacerbate this situation. Hence, some overlay networks
[Yegneswaran et al. 2004; Marchetti et al. 2009; Czirkos and Hosszú 2012] are
utilized to accelerate the communication and reduce the latency of networks, and
advanced topologies like hierarchical [Yegneswaran et al. 2004] and hybrid decen-
tralized [Albers et al. 2002; Luther et al. 2007; Bye and Albayrak 2008] topologies
are proposed to make the network more reasonable and convenient.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:34 G. Meng et al.

—Capabilities of pivotal nodes. In collaborative security systems, the capabili-
ties of some pivotal nodes can directly restrict the scalability of the system. Take
Carat [Oliner et al. 2012] as an example. Since all mobile devices will send state
information of power usage of applications to the Carat server, the Carat server
should have enough capabilities to cope with amounts of information. Otherwise, the
performance will be degraded, even the service will be unavailable soon. Therefore,
enhancing the capabilities and distributing duties of pivotal nodes can make the
system more scalable to some extent.

8.4. Robustness

Robustness means the resilience of collaborative security systems to attacks, especially
the insider attacks such as Sybil attack [Douceur 2002], Newcomer attack [Resnick
et al. 2000], and Collusion attack [Fung 2011]. Different from the presented threats
in Section 4, these attacks are specific to collaborative security, and they take advan-
tage of the provided collaborative mechanism to distribute false information or wrong
feedbacks. They may penetrate a collaborative security system acting as “trusted”
participants to perform some security-related tasks, which can disturb and obstruct
the normal decision making of the whole system. For example, in a Sybil attack, the
attacker may create an amount of pseudonymous nodes in order to gain a dispropor-
tionate influence. They can spread a rumor in a collaborative security system that one
of security systems is compromised, which is actually not, and should be excluded. If the
rumor is acknowledged by enough participants, the innocent system is likely excluded,
and worse, the whole system can be destroyed gradually. Therefore, collaborative secu-
rity systems should have a sound mechanism to prevent these kinds of attacks. And the
fact is that the insider attacks are often happening in collaborative security systems
according to our investigation. Fortunately, some organizations and corporations have
proposed several countermeasures against the insider attacks described as follows.

—Certification Authority (CA). CA is a special node that is trusted by others in a
collaborative security system. It guarantees security and steadiness of the commu-
nity by distributing keys and certificates to the newly joined and scrutinized nodes.
The keys and certificates can be utilized for authentication and encryption of ex-
changed messages. For example, by exploiting public-key cryptography to create a
digital signature for the exchanged messages, it can prevent messages from interpo-
lation and counterfeit, and thereby avoid of insider attacks. As in Janakiraman et al.
[2003] and Yegneswaran et al. [2004], the hash values of signatures are appended to
the messages using hash scheme and public-key cryptography. A one-way key chain
is used to hash messages in Krontiris et al. [2009], where CA should distribute the
initial key to each node. However, the main drawback of CA is that it is less scalable
and requires more maintenance, for example, key distribution and cryptographic
authentication.

—Trust and Reputation. Trust and reputation are both used to evaluate the trust-
worthiness of nodes in a collaborative security system. The difference is that trust
comes from subjective and direct experiences with the targeted node, however, rep-
utation is largely based on opinions from other nodes. Nodes with low trustworthi-
ness will not be taken into account for cooperation, and even be removed from the
system. Lin and Varadharajan [2006] initiatively set up trust-centric solutions to
secure collaboration in mobile agents. They add a trust management layer to col-
lect and evaluate behavioral evidences on top of conventional security layer and
facilitate security decision-making process in underlying systems, which is inte-
grated into MobileTrust. A list of acquaintance peers is maintained in Duma et al.
[2006] for managing trust. The trustworthiness of a node’s neighbours is dynamically

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:35

calculated in term of successful experiences and unsuccessful experiences with them.
Pérez et al. [2011] propose a collaborative architecture for distributed IDSs with an
interdomain trust and reputation model measuring the credibility for each mobile
node. The reputation of one moving node is based on the sum of members’ expe-
riences with it in the current domain and reputations of other domains. The HIDS
with low reputation will not be taken into consideration to detect intrusions. Ahamed
et al. [2009] present a novel trust mechanism in wireless sensor network. An en-
hanced security solution model, Trust-Based Security Solution (TBSS), is proposed
to maintain trust relationship amongst the peers. It takes into account both the
direct trust (i.e., node’s previous experiences with other nodes) and indirect trust
(i.e., the group-key and counter values from surrounding nodes) to generate the fi-
nal trust value. Fung et al. [2009, 2010] address the issue of trust management in
collaborative intrusion detection. In Fung et al. [2009], they take the mutual experi-
ences between IDSs as the main reference, and introduce a Dirichlet-based model to
quantify the level of trustworthiness. Afterwards, they [2010] propose acquaintance
management where each HIDS selects and maintains a list of collaborators. With
the collaborative efforts of its acquaintances, one HIDS can benefit from better intru-
sion detection and assessing the trustworthiness of the acquaintances. By exploiting
Bayesian learning, they evaluate both the false-positive rate and false-negative rate
of neighbors’ opinions and subsequently aggregate them.

As already mentioned, trust and reputation management is prevailing in prevent-
ing the insider attacks. As a concept in social science, trust and reputation have been
introduced to analyze and evaluate the past interactions of nodes with others. A node
may decide whether to accept the invitation of communication from others based on
either own direct experiences (i.e., trust) or else indirect comments (i.e., reputation).
Due to the effectiveness and practicality, it has been widely used in collaborative secu-
rity. However, it still leaves some issues. There is lack of a sound criteria and approach
to evaluate and quantify the robustness of collaborative security. Some approaches are
although proposed, they are usually focusing on some specific insider attacks, however
show deficiency against other insider attacks.

8.5. Incentive

Collaboration security is being confronted with an embarrassed situation, where in-
dividual systems may sacrifice own CPU/memory and privacy to do some processing
work for collaboration. Without a direct benefit, these systems will on balance lose
any interest to be involved. Therefore, an incentive for collaboration can effectively
raise the enthusiasm of individual systems [Fung 2011]. To the best of our knowledge,
there are two kinds of incentive mechanisms applied in collaborative security: (1) co-
ercion incentive, meaning that collaboration is mandatorily performed due to deficient
analysis ability and resource limitations, for example, sensor networks that cannot
afford traditional consuming security solutions will adopt a collaborative mechanism
to make security decisions [Ahamed et al. 2009]; and (2) benefit incentive, which means
that collaboration can bring extra benefits at the cost of considerable resources. As in
Yegneswaran et al. [2004], the node who shares security-related information has a
priority and advantage to recognize the occurrence of intrusions, and logically take a
timely measurement to reduce the loss caused by intrusions. Other examples can be
found in Cheng et al. [2007] and Reed et al. [2010].

8.6. Correlation of the Challenges

We have picked up some typical works that have (partially) solved the five challenges
mentioned in Table VII. Intuitively, most of works (72%) concern about improving

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:36 G. Meng et al.

Table VII. Statistics of Challenges

accuracy. After all, the target of introducing collaboration is largely to raise the accu-
racy of detection. In addition, we observe that scalability takes a high weigh (69%) in
designing collaborative security systems. The challenge, which is architecture-related,
will retain a hotspot topic in this area. Conversely, incentive (17%) does not draw
enough attention though it has been proved being facilitating the performance of col-
laboration to some extent.

To further study the (positive or negative) correlations between the challenges, the
system designer can decide what challenges can be handled together if positive cor-
relations exist or given up if negative correlations exist. In this work, we perform
the correlation analysis using correlation coefficients between any two challenges as

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

Collaborative Security: A Survey and Taxonomy 1:37

Table VIII. Correlations of Challenges

Privacy
Accuracy –0.70

Scalability –0.12 –0.24
Robustness 0.15 0.29 0.04

Incentive NULL –0.40 –0.52 0.11
Privacy Accuracy Scalability Robustness Incentive

follows. Since we aim to investigate if the relationship between two challenges are loose
or tight, conflictive or harmonious, we calculate the Pearson product-moment correla-
tion coefficient between them presented in Table VIII. It provides a measure of linear
correlation between two challenges, by giving a value between 1 and –1. According to
Table VIII, the designer can clearly learn to leverage the facilitation between positive
challenges, and balance negative challenges.

Given two challenges X and Y , the correlation value between them is calculated by
dividing the covariance of these two variables by the product of the standard deviations
of these two variables. It is worth mentioning that we only take into account the dataset
when two challenges both appear in pairs.

The correlation value is in the range of [–1.0, 1.0] (The correlation value of (privacy,
incentive) is NULL because the standard deviation of variable incentive is zero). The
correlation |r| > 0.7 reveals a strong correlation; 0.3 < |r| < 0.7 presents a moderate
correlation; and |r| < 0.3 presents a weak correlation. In addition, a positive value
means a positive correlation and a negative value means a negative correlation.

We have selected several highlights among these correlations as follows:

(1) All the literature that mentions the problem of privacy will also refer to accuracy.
According to the correlation value, these two challenges present a strong negative
correlation (–0.70), which means that along with privacy is being well solved, the
accuracy of collaborative security will be degraded correspondingly. It is reason-
able because when sensitive information is sanitized during collaboration, security
systems will lose some important information; hence, the accuracy will be reduced.

(2) Robustness is relatively independent with other challenges, of which the abso-
lute values of correlation coefficients are all below 0.3. According to our investiga-
tion, workd with the consideration of robustness usually employs an extraordinary
mechanism to prevent insider attacks, which is independent with security systems.
For example, replying on a trust authority or retaining trust models for its neigh-
bours do not interfere the process of attack detection and consequently will not
influence other challenges significantly.

(3) Only 17% of works have mentioned and coped with the incentive and most of
them cannot provide an effective solution for this. In addition, it may be surprised
that accuracy has a considerable negative correlation (–) with incentive. To some
extent, it can imply that although strong incentives can attract more volunteers
and efforts, the accuracy is more dependent on analysis methodology and privacy
preservation.

9. CONCLUSION

Collaboration in security systems has become a recent trend, with more and more
individual systems converting to this method of protection. Compared to traditional
individual security, the intention of collaborative security is to share dependable in-
formation to provide better security for large systems. This type of security system
is more effective and accurate in detecting attacks, with the added ability to detect
more sophisticated attacks, such as collaborative attacks. Within this survey, we stated

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

1:38 G. Meng et al.

our motivations to study collaborative security and analyzed many systems equipped
with collaborative security, which we supplemented by explaining the advantages and
disadvantages of each system. We then provided several comprehensive designs for
collaborative security and proceeded to present a thorough discussion of the elements
of each design. We laid out several challenges with the current structure of collabora-
tive security systems that have proven to limit the extent of the effectiveness of this
type of system. These discussions, as well as a discussion of the trends in collaborative
security, provide a platform on which future research on this type of security system
can be based.

REFERENCES

Sharad Agarwal, Ratul Mahajan, Alice Zheng, and Victor Bahl. 2010. There’s an app for that, but it doesn’t
work. Diagnosing mobile applications in the wild. In Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks (HotNets’10). 1–6.

Sheikh I Ahamed, Donghyun Kim, Chowdhury S. Hasan, and Mohammad Zulkernine. 2009. Towards devel-
oping a trust-based security solution. In Proceedings of the 24th ACM Symposium on Applied Computing
(SAC’09). 2204–2205.

Patrick Albers, Olivier Camp, JeanMarc Percher, Bernard Jouga, and Ricardo Puttini. 2002. Security in
ad hoc networks: A general intrusion detection architecture enhancing trust based approaches. In
Proceedings of the 1st International Workshop on Wireless Information Systems (WIS’02). 1–12.

Tiranuch Anantvalee and Jie Wu. 2007. A survey on intrusion detection in mobile ad hoc networks. Wireless
Network Security (WNS) 2, 159–180.

Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin Redon, and Ravishankar
Borgaonkar. 2012. New privacy issues in mobile telephony: Fix and verification. In Proceedings of the
19th ACM Conference on Computer and Communications Security (CCS’12). 205–216.

Dimitrios Baltatzis, Christos Ilioudis, and George Pangalos. 2012. A role engineering framework to sup-
port dynamic authorizations in collaborative environments. Information Security Journal: A Global
Perspective 21, 1 (Jan. 2012), 12–27.

Elad Barkan, Eli Biham, and Nathan Keller. 2003. Instant ciphertext-only cryptanalysis of GSM encrypted
communication. Advances in Cryptology (CRYPTO) 21, 3 (March 2003), 392–429.

Michael Becher. 2009. Security of Smartphones at the Dawn of Their Ubiquitousness. Universität Mannheim.
Bro. 2013. The Bro Network Security Monitor. Retrieved from http://www.bro-ids.org/.
Rainer Bye. 2013. Group-based IDS Collaboration Framework: A Case Study of the Artificial Immune System.

Berlin.
Rainer Bye and Sahin Albayrak. 2008. CIMD-Collaborative Intrusion and Malware Detection. Technical

Report TUB-DAI 08/08-01. Technische Universität Berlin-DAI-Labor. 1–29 pages.
Rainer Bye, Seyit Ahmet Camtepe, and Sahin Albayrak. 2010. Collaborative intrusion detection framework:

Characteristics, adversarial opportunities and countermeasures. In Proceedings of the 19th International
Conference on Collaborative Methods for Security and Privacy (CollSec’10).

Giuseppe Cardone, Paolo Bellavista, Antonio Corradi, and Luca Foschini. 2011. Effective collaborative mon-
itoring in smart cities: Converging MANET and WSN for fast data collection. In Proceedings of ITU
Kaleidoscope 2011: The Fully Networked Human Innovations for Future Networks and Services (K2011).
1–8.

Godwin Caruana and Maozhen Li. 2012. A survey of emerging approaches to spam filtering. ACM Computing
Surveys (CSUR) 44, 2 (Feb. 2012), 9:1–9:27.

Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G. Andersen. 2011.
SplitScreen: Enabling efficient, distributed malware detection. In Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation (USENIX’11). 25–38.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Computing
Surveys (CSUR) 41, 3 (July 2009), 15:1–15:58.

Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-channel leaks in web applications: A
reality today, a challenge tomorrow. In Proceedings of the 31st IEEE Symposium on Security and Privacy
(S&P’10). 191–206.

Jerry Cheng, S. H. Y. Wong, Hao Yang, and Songwu Lu. 2007. SmartSiren: Virus detection and alert for
smartphones. In Proceedings of the 5th International Conference on Mobile Systems, Applications and
Services (MobiSys’07). 258–271.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://www.bro-ids.org/

Collaborative Security: A Survey and Taxonomy 1:39

ChinaNews. 2013. Millions of Android Users Are at Risk of Largest-so-BotNet. Retrieved from http://finance.
chinanews.com/it/2013/01-09/4474630.shtml.

Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn Song. 2010. Inference and analysis of
formal models of botnet command and control protocols. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS’10). 426–439.

Cloudmark 2013. Spam, a Large Collaborative Spam-filtering Community. Retrieved from http://cloudmark.
com.

CMU. 2004. CERT. Retrieved from http://www.cert.org/.
Lucian Constantin. 2013. Attackers Are Now Exploiting a Java Zero-day Vulnerability. Retrieved from

http://www.computerworld.com/s/article/9235550/Attackers_are_now_exploiting_a_Java_zero_day_
vulnerability.

Zoltán Czirkos and Gábor Hosszú. 2012. Enhancing collaborative intrusion detection methods using a kadem-
lia overlay network. In Information and Communication Technologies (ICT), Vol. 7479. 52–63.

David Dagon, Tom Martin, and Thad Starner. 2004. Mobile phones as computing devices: The viruses are
coming! IEEE Pervasive Computing 3, 4 (Oct. 2004), 11–15.

John R. Douceur. 2002. The Sybil attack. In Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02). 251–260.

Dshield 2013. Dshield. http://www.dshield.org/.
Claudiu Duma, Martin Karresand, Nahid Shahmehri, and Germano Caronni. 2006. A trust-aware, p2p-

based overlay for intrusion detection. In Proceedings of the 17th International Conference on Database
and Expert Systems Applications (DEXA’06). 692–697.

Huwaida Tagelsir Elshoush and Izzeldin Mohamed Osman. 2011. Alert correlation in collaborative intelligent
intrusion detection systems: A survey. Applied Soft Computing 11, 7 (Jan. 2011), 4349–4365.

William Enck, Peter Gilbert, ByungGon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol
N. Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation (USENIX’10). 1–6.

Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. 2009. SCanDroid: Automated security certification
of android applications. In Proceedings of the 31st IEEE Symposium on Security and Privacy (S&P).

Carol Fung. 2011. Collaborative intrusion detection networks and insider attacks. Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications 2, 1, 63–74.

Carol J. Fung, Jie Zhang, Issam Aib, and Raouf Boutaba. 2009. Robust and scalable trust management for
collaborative intrusion detection. In Proceedings of the 11th IFIP/IEEE International Symposium on
Integrated Network Management (IM’09). New York, 33–40.

Carol J. Fung, Jie Zhang, and Raouf Boutaba. 2010. Effective acquaintance management for collaborative
intrusion detection networks. In Proceedings of the 6th International Conference on Network and Service
Management (CNSM’10). 158–165.

Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic detection of capability leaks
in stock android smartphones. In Proceedings of the 19th Network and Distributed System Security
Symposium (NDSS’12).

Philip Gross, Janak Parekh, and Gail Kaiser. 2004. Secure “Selecticast” for collaborative intrusion detec-
tion systems. In Proceedings of the 3rd International Workshop on Distributed Event-Based Systems
(DEBS’04).

Qijun Gu, Wanyu Zang, Meng Yu, and Peng Liu. 2012. Collaborative traffic-aware intrusion monitoring in
multi-channel mesh networks. In Proceedings of the 11th International Conference on Trust, Security
and Privacy in Computing and Communications. 793–800.

Amir Houmansadr and Nikita Borisov. 2012a. BotMosaic: Collaborative network watermark for botnet
detection. CoRR abs/1203.1568, 1–24.

Amir Houmansadr and Nikita Borisov. 2012b. BotMosaic: Collaborative network watermark for the detection
of IRC-based botnets. Journal of Systems and Software 86, 3 (Nov. 2012), 707–715.

Yian Huang and Wenke Lee. 2003. A cooperative intrusion detection system for ad hoc networks. In Pro-
ceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN’03). 135–147.

Nwokedi Idika and Aditya P. Mathur. 2007. A Survey of Malware Detection Techniques. Technical Report.
Purdue University.

Vineay M. Igure and Ronald D. Williams. 2008. Taxonomies of attacks and vulnerabilities in computer
systems. Communications Surveys & Tutorials (CST), 6–19.

Ramaprabhu Janakiraman, Marcel Waldvogel, and Qi Zhang. 2003. Indra: A peer-to-peer approach to net-
work intrusion detection and prevention. In Proceedings of the 12th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE’03). 226–231.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://finance.chinanews.com/it/2013/01-09/4474630.shtml
http://finance.chinanews.com/it/2013/01-09/4474630.shtml
http://www.cert.org/
http://www.computerworld.com/s/article/9235550/Attackersarenowexploiti ngaJavazerodayvulnerability
http://www.computerworld.com/s/article/9235550/Attackersarenowexploiti ngaJavazerodayvulnerability
http://www.dshield.org/

1:40 G. Meng et al.

Xuxian Jiang and Yajin Zhou. 2013. Android Malware. Springer.
Oleg Kachirski and Ratan Guha. 2003. Effective intrusion detection using multiple sensors in wireless ad

hoc networks. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences
(HICSS’03), Vol. 2. 57–64.

Hahnsang Kim, Joshua Smith, and Kang G. Shin. 2008. Detecting energy-greedy anomalies and mobile
malware variants. In Proceedings of the 6th International Conference on Mobile Systems, Applications
and Services (MobiSys’08). 239–252.

Jungwon Kim, Julie Greensmith, Jamie Twycross, and Uwe Aickelin. 2010. Malicious code execution detec-
tion and response immune system inspired by the danger theory. CoRR abs/1003.4142.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the 19th
Annual International Cryptology Conference (CRYPTO’99). 388–397.

Joseph S. Kong, Behnam A. Rezaei, Nima Sarshar, Vwani P. Roychowdhury, and P. Oscar Boykin. 2006.
Collaborative spam filtering using e-mail networks. Computer 39, 8 (Aug. 2006), 67–73.

Ioannis Krontiris, Zinaida Benenson, and Thanassis Giannetsos. 2009. Cooperative intrusion detection in
wireless sensor networks. In Proceedings of the 6th European Conference on Wireless Sensor Networks
(EWSN’09). 263–278.

Ioannis Krontiris, Tassos Dimitriou, and Felix C. Freiling. 2007a. Towards intrusion detection in wireless
sensor networks. In Proceedings of the 13th European Wireless Conference (EWC’07). 16.

Ioannis Krontiris, Tassos Dimitriou, Thanassis Giannetsos, and Marios Mpasoukos. 2007b. Intrusion detec-
tion of sinkhole attacks in wireless sensor networks. In Proceedings of the 3rd International Conference
on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS’07). 150–161.

Gu-Hsin Lai, Chia-Mei Chen, Chi-Sung Laih, and Tsuhan Chen. 2009. A collaborative anti-spam system.
Expert Systems with Applications 36, 3 (April 2009), 6645–6653.

Kang Li, Zhenyu Zhong, and L Ramaswamy. 2009. Privacy-aware collaborative spam filtering. IEEE Trans-
actions on Parallel and Distributed Systems 20, 5 (May 2009), 725–739.

Ching Lin and Vijay Varadharajan. 2006. Trust enhanced security - a new philosophy for secure collab-
oration of mobile agents. In Proceedings of the International Conference on Collaborative Computing:
Networking, Applications and Worksharing. 1–8.

Patrick Lincoln, Phillip Porras, and Vitally Shmatikov. 2004. Privacy-preserving sharing and correction of
security alerts. In Proceedings of the 13th Conference on USENIX Security Symposium (USENIX’04),
Vol. 13. 1–17.

Michael Locasto, Janak J. Parekh, Angelos D. Keromytis, and Salvatore J. Stolfo. 2005. Towards collaborative
security and p2p intrusion detection. In Proceedings of the 6th IEEE Information Assurance Workshop
(IAW’05). 333–339.

K. Luther, R. Bye, T. Alpcan, a. Muller, and S. Albayrak. 2007. A cooperative AIS framework for intrusion
detection. In Proceedings of the IEEE International Conference on Communications (ICC’07). 1409–1416.

David J. Malan. 2007. Rapid Detection of Botnets Through Collaborative Networks of Peers. Ph.D. Disserta-
tion. Harvard University.

Mirco Marchetti, Michele Messori, and Michele Colajanni. 2009. Peer-to-peer architecture for collaborative
intrusion and malware detection on a large scale. In Proceedings of the 12th International Conference
on Information Security (ISC’09). 475–490.

Microsoft. 2013. Common Types of Network Attacks. http://technet.microsoft.com/en-us/library/cc959354.
aspx

Microsoft. 2014. Account Lockout Policy Overview. Retrieved from http://technet.microsoft.com/en-us/
library/cc783851(v=ws.10).aspx.

Markus Miettinen and Perttu Halonen. 2006. Host-based intrusion detection for advanced mobile devices. In
Proceedings of the 20th International Conference on Advanced Information Networking and Applications
(AINA’06). 72–76.

MIT Corporation. 2003a. Common Attack Pattern Enumeration and Classification. Retrieved from
http://capec.mitre.org.

MIT Corporation. 2003b. Common Vulnerabilities and Exposures. Retrieved from http://cve.mitre.org.
Daniel C. Nash, Thomas L. Martin, Dong S. Ha, and Michael S. Hsiao. 2005. Towards an intrusion detection

system for battery exhaustion attacks on mobile computing devices. In Proceedings of the 3rd IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom’05). 141–
145.

Jon Oberheide and Farnam Jahanian. 2010. When mobile is harder than fixed (and vice versa): Demystifying
security challenges in mobile environments. In Proceedings of the 7th Workshop on Mobile Computing
Systems & Applications (HotMobile’10). 43–48.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://technet.microsoft.com/en-us/library/cc959354.aspx
http://technet.microsoft.com/en-us/library/cc959354.aspx
http://technet.microsoft.com/en-us/library/cc783851
http://technet.microsoft.com/en-us/library/cc783851
http://capec.mitre.org
http://cve.mitre.org

Collaborative Security: A Survey and Taxonomy 1:41

Adam J. O’Donnell and Vipul Ved Prakash. 2006. Applying collaborative anti-spam techniques to the anti-
virus problem. In Virus Bulletin. Montreal.

Adam J. Oliner, Anand Iyer, Eemil Lagerspetz, Sasu Tarkoma, and Ion Stoica. 2012. Collaborative energy
debugging for mobile devices. In Proceedings of the 8th USENIX Conference on Hot Topics in System
Dependability (USENIX’12). 6–11.

OSSEC 2013. Open Source SECurity. http://www.ossec.net/.
Animesh Patcha and Amitabh Mishra. 2003. Collaborative security architecture for black hole attack pre-

vention in mobile ad hoc networks. In Proceedings of the 6th IEEE Radio and Wireless Symposium
(RWS’03). 75–78.

Al-Sakib Khan Pathan, Hyung-Woo Lee, and Choong Seon Hong. 2006. Security in wireless sensor networks:
Issues and challenges. In Proceedings of the 8th International Conference Advanced Communication
Technology (ICACT), Vol. 2. 1043–1048.

Manuel Gil Pérez, Félix Gómez Mármol, Gregorio Martı́nez Pérez, and Antonio F. Gómez Skarmeta. 2011.
Mobility in collaborative alert systems: Building trust through reputation. In Proceedings of the IFIP/TC
6th International Conference on Networking (NETWORKING’11). 251–262.

Stefan Pütz, Roland Schmitz, and Tobias Martin. 2001. Security mechanisms in UMTS. Datenschutz und
Datensicherheit 25, 6, 1–10.

Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. 2012. Collaborative TCP sequence number inference attack:
How to crack sequence number under a second. In Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS’12). 593–604.

Radmilo Racic, Denys Ma, and Hao Chen. 2006. Exploiting MMS vulnerabilities to stealthily exhaust mobile
phone’s battery. In Securecomm and Workshops. 1–10.

Jason Reed, Adam J. Aviv, Daniel Wagner, Andreas Haeberlen, Benjamin C. Pierce, and Jonathan M. Smith.
2010. Differential privacy for collaborative security. In Proceedings of the 3rd European Workshop on
System Security (EUROSEC’10). ACM, 1–7.

Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. 2000. Reputation systems. Commu-
nicatinos of the ACM 43, 12, 45–48.

Hiren Kumar Deva Sarma Sarma and Avijit Kar. 2006. Security threats in wireless sensor networks. In Pro-
ceedings of 40th Annual IEEE International Carnahan Conferences on Security Technology (ICCST’06).
243–251.

Roman Schlegel, Kehuan Zhang, Xiao yong Zhou, Mehool Intwala, Apu Kapadia, and XiaoFeng Wang. 2011.
Soundcomber: A stealthy and context-aware sound trojan for smartphones. In Proceedings of the 18th
Network and Distributed System Security Symposium (NDSS’11).

Aubrey-Derrick Schmidt, Rainer Bye, and Hans-Gunther Schmidt. 2008. Monitoring Android for Collabo-
rative Anomaly Detection: A First Architectural Draft. Technical Report TUB-DAI 08/08-02. DAI-Labor
der Technischen Universität Berlin.

Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt, Jan Clausen, Osman Kiraz, Kamer A. Yüksel,
Seyit A. Camtepe, and Sahin Albayrak. 2009. Static analysis of executables for collaborative malware
detection on android. In Proceedings of the 8th IEEE International Conference on Communications
(ICC’09). 631–635.

SecurityFocus. 2003. BUGTRAQ, Security Focus Online. Retrieved from http://www.securityfocus.com/.
JeanMarc Seigneur and Adam Slagell. 2009. Collaborative Computer Security and Trust Management. IGI

Global, Hershey, New York.
Kalpana Sharma and M. K. Ghose. 2010. Wireless sensor networks: An overview on its security threats. In

IJCA Special Issue on “Mobile Ad-hoc Networks.” 42–45.
Wenxuan Shi, Maoqiang Xie, and Yalou Huang. 2011. Collaborative spam filtering technique based on MIME

fingerprints. In Proceedings of the 9th World Congress on Intelligent Control and Automation (WCICA’11).
225–230.

Chris Simmons, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, and Qishi Wu. 2009. AVOIDIT: A Cyber
Attack Taxonomy. Technical Report CS-09-003. University of Memphis.

Kapil Singh, Samrit Sangal, Nehil Jain, Patrick Traynor, and Wenke Lee. 2010. Evaluating bluetooth as a
medium for botnet command and control. In Proceedings of the 7th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA’10). 61–80.

Michael Sirivianos, Kyungbaek Kim, and Xiaowei Yang. 2011. SocialFilter: Introducing social trust to col-
laborative spam mitigation. In Proceedings of the 30th IEEE International Conference on Computer and
Communications (INFOCOM’11). 2300–2308.

SNORT. 2013. Snort. Retrieved from http://www.snort.org/.

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://www.ossec.net/
http://www.securityfocus.com/
http://www.snort.org/

1:42 G. Meng et al.

Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing analysis of keystrokes and timing
attacks on SSH. In Proceedings of the 10th Conference on USENIX Security Symposium (USENIX’01),
Vol. 10. 25–25.

Pedro Sousa, Artur Machado, Miguel Rocha, Paulo Cortez, and Miguel Rio. 2010. A collaborative approach for
spam detection. In Proceedings of the 2nd International Conference on Evolving Internet (INTERNET’10).
92–97.

Matija Stevanovic, Kasper Revsbech, and Jens Myrup Pedersen. 2012. A collaborative approach to botnet
protection. In Proceedings of the International Cross-Domain Conference and Workshop on Availability,
Reliability, and Security (CD-ARES’12). 624–638.

Symantec. 2012. Internet Security Threat Report. Technical Report 17. Symantec.
Symantec. 2013. Internet Security Threat Report. Technical Report 18. Symantec.
Patrick Traynor, William Enck, Patrick McDaniel, and Thomas La Porta. 2006. Mitigating attacks on open

functionality in SMS-capable cellular networks. In Proceedings of the 12th Annual International Con-
ference on Mobile Computing and Networking (MobiCom’06). 182–193.

Tripwire. 2013. Tripwire, Inc IT Security Software to Improve Data Security and Regulatory Compliance.
Retrieved from http://www.tripwire.com/.

Shian-Shyong Tseng, Ai-Chin Lu, Nai-Wen Hsu, Geng-Da Tsai, and Ching-Heng Ku. 2011. Building an anti-
botnet platform to mitigate botnet. In Recent Researches in Communications and Computers. 409–413.

Jeffery Undercoffer, Sasikanth Avancha, Anupam Joshi, and John Pinkston. 2002. Security for sensor net-
works. CADIP.

Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. 2003. Modeling computer attacks: An ontology for
intrusion detection. In Recent Advances in Intrusion Detection (RAID), 113–135.

Martin Vuagnoux and Sylvain Pasini. 2009. Compromising electromagnetic emanations of wired and wireless
keyboards. In Proceedings of the 18th Conference on USENIX Security Symposium (USENIX’09). 1–16.

Hailong Wang and Zhenghu Gong. 2009. Collaboration-based botnet detection architecture. In Proceedings
of the 2nd International Conference on Intelligent Computation Technology and Automation (ICICTA’09).
375–378.

Wikipedia. 2014. Interoperability. Retrieved from http://en.wikipedia.org/wiki/Interoperability.
Benny Wong. 2006. PalProtect: A collaborative security approach to comment spam. In Proceedings of the

IEEE Information Assurance Workshop. 170–175.
Dingbang Xu and Peng Ning. 2005. Privacy-preserving alert correlation : A concept hierarchy based approach.

In Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC’05). 537–546.
Vinod Yegneswaran, Paul Barford, and Somesh Jha. 2004. Global intrusion detection in the domino overlay

system. In Proceedings of Network and Distributed System Security Symposium (NDSS’04).
Jinqiao Yu, Y. V. Ramana Reddy, Sentil Selliah, Srinivas Kankanahalli, and Sumitra Reddy. 2004. A collab-

orative architecture for intrusion detection systems with intelligent agents and knowledge-based alert
evaluation. In Proceedings of the 8th International Conference on Computer Supported Cooperative Work
in Design, Vol. 2. 271–276.

Yongguang Zhang, Wenke Lee, and Y. A. Huang. 2003. Intrusion detection techniques for mobile wireless
networks. Wireless Networks 9, 5 (Sept. 2003), 545–556.

Zhenyu Zhong, Lakshmish Ramaswamy, and Kang Li. 2008. ALPACAS: A large-scale privacy-aware collab-
orative anti-spam system. In Proceedings of the 27th IEEE International Conference on Computer and
Communications (INFOCOM’08). 556–564.

Chenfeng Zhou. 2007. Evaluation of a decentralized architecture for large scale collaborative intrusion
detection. In Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM’07). 80–89.

Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. 2009. Collaborative detection of
fast flux phishing domains. Journal of Networks (JNW) 4, 1 (Feb. 2009), 75–84.

Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. 2010. A survey of coordinated
attacks and collaborative intrusion detection. Computers & Security 29, 1, 124–140.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and evolution. In Pro-
ceedings of the 33rd IEEE Symposium on Security and Privacy (S&P). Washington, DC, 95–109.

Quanyan Zhu, Carol Fung, Raouf Boutaba, and Tamer Baar. 2012. GUIDEX: A game-theoretic incentive-
based mechanism for intrusion detection networks. IEEE Journal on Selected Areas in Communications
30, 11 (December 2012), 2220–2230.

Received December 2013; revised December 2014; accepted April 2015

ACM Computing Surveys, Vol. 48, No. 1, Article 1, Publication date: July 2015.

http://www.tripwire.com/
http://en.wikipedia.org/wiki/Interoperability

