
Guided, Stochastic Model-Based GUI Testing of Android Apps
Ting Su1,2, Guozhu Meng2, Yuting Chen3, Ke Wu1

Weiming Yang1, Yao Yao1, Geguang Pu1, Yang Liu2, Zhendong Su4∗
1School of Computer Science and Software Engineering, East China Normal University, China

2School of Computer Engineering, Nanyang Technological University, Singapore
3Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

4Department of Computer Science, University of California, Davis, USA
{suting,gzmeng}@ntu.edu.sg,chenyt@cs.sjtu.edu.cn,sei_wk2009@126.com,ywm0822@qq.com

sei_yaoyao@126.com,ggpu@sei.ecnu.edu.cn,yangliu@ntu.edu.sg,su@cs.ucdavis.edu

ABSTRACT
Mobile apps are ubiquitous, operate in complex environments and
are developed under the time-to-market pressure. Ensuring their
correctness and reliability thus becomes an important challenge.
This paper introduces Stoat, a novel guided approach to perform
stochastic model-based testing on Android apps. Stoat operates in
two phases: (1) Given an app as input, it uses dynamic analysis
enhanced by a weighted UI exploration strategy and static analysis
to reverse engineer a stochastic model of the app’s GUI interac-
tions; and (2) it adapts Gibbs sampling to iteratively mutate/refine
the stochastic model and guides test generation from the mutated
models toward achieving high code and model coverage and ex-
hibiting diverse sequences. During testing, system-level events are
randomly injected to further enhance the testing effectiveness.

Stoat was evaluated on 93 open-source apps. The results show
(1) the models produced by Stoat cover 17∼31% more code than
those by existing modeling tools; (2) Stoat detects 3X more unique
crashes than two state-of-the-art testing tools, Monkey and Sapienz.
Furthermore, Stoat tested 1661 most popular Google Play apps, and
detected 2110 previously unknown and unique crashes. So far, 43
developers have responded that they are investigating our reports.
20 of reported crashes have been confirmed, and 8 already fixed.

CCS CONCEPTS
• Theory of computation → Program analysis; • Software
and its engineering→ Software testing and debugging;

KEYWORDS
Mobile Apps, GUI Testing, Model-based Testing
ACM Reference Format:
Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,
Geguang Pu, Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-
Based GUI Testing of Android Apps. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT

∗Geguang Pu and Yuting Chen are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106298

Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106298

1 INTRODUCTION
Mobile apps have become ubiquitous and drastically increased
in number over the recent years. As recent statistics [29] shows,
over 50K new Android apps are submitted to Google Play each
month. However, it is challenging to guarantee their quality. First,
they are event-centric programs with rich graphical user interfaces
(GUIs), and interact with complex environments (e.g., users, devices,
and other apps). Second, they are typically developed under the
time-to-market pressure, thus may be inadequately tested before
releases. When performing testing, developers tend to exercise
those functionalities or usage scenarios that they believe to be
important, but maymiss bugs that their designed tests fail to expose.

To tackle this challenge, many techniques [2, 4, 6, 39–41] have
been proposed. Symbolic execution [4, 60] tracks the origins and
handles of events at source-code level, and generates tests by ex-
haustively exploring program paths. Random testing [28, 39] fuzzes
apps by generating a stream of random events. Evolutionary algo-
rithm [40, 41] generates tests by randomly mutating and crossover-
ing event sequences to fullfill their optimization goals.

Model-based testing (MBT) [23, 54] is another popular approach
to automating GUI testing, which abstracts the app behaviors by
a model, and then derives tests from it to validate apps. However,
exhaustively generating tests from a model to validate app behavior
is overwhelming. For example, Bites [20] is a simple cookbook app
(shown in Figure 2a) with 1027 lines of code, and its model has 21
states and 70 transitions (generated by our approach). This model
can generate 6 one-event sequences, 36 two-event sequences, 567K
three-event sequences, which are rather time-consuming to execute.
Due to this path-explosion problem, it is practically infeasible to
derive all potential tests and execute them. As a result, traditional
MBT techniques choose to generate random tests and use model-
level coverage criteria [2, 43] (e.g., covering all transitions) as testing
goals. However, without a strong guidance, such tests are often
redundant and ineffective to detect bugs. In addition, the previous
research on model-based GUI testing [1, 2, 7, 15, 18, 31, 32, 42, 48, 57,
67] only considers UI-level events (e.g., click, edit), and disregards
system-level events (e.g., screen rotation, incoming calls) during
testing. Without combining both types of events, the effectiveness
of MBT may be further limited due to inadequate testing.

245

https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3106237.3106298

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su

Furthermore, most apps are developed without models in prac-
tice. Despite much effort [1, 2, 19, 42, 57, 67] in manually or auto-
matically constructing models to represent GUI interactions, MBT’s
effectiveness is still limited due to incomplete UI exploration. For
example, as a recent extensive study [16] shows, the models pro-
duced by existing GUI exploration tools achieve fairly low coverage
(only half of the coverage achieved by Monkey).

The aforementioned challenges underline the importance of
developing effective model-based testing techniques to unleash
its potential. To this end, we propose a novel stochastic model-
based testing approach, Stoat1 (STOchastic model App Tester), to
improve GUI testing of Android apps. It aims to thoroughly test the
functionalities of an app from the GUI model, and validate the app’s
behavior by enforcing various user/system interactions [66]. Given
an app as input, Stoat operates in two phases. First, it generates a
stochasticmodel from the app to describe its GUI interactions. In our
setting, a stochastic model for an app is a finite state machine (FSM)
whose edges are associated with probabilities for test generation. In
particular, Stoat takes a dynamic analysis technique, enhanced by
a weighted UI exploration strategy and static analysis, to explore
the app’s behaviors and construct the stochastic model.

Second, Stoat iteratively mutates the stochastic model and gener-
ates tests from the model mutants. By perturbing the probabilities,
Stoat is able to generate tests with various compositions of events
to sufficiently test the GUI interactions, and purposely steers testing
toward less travelled paths to detect deep bugs. In particular, Stoat
takes a guided search algorithm, inspired by Markov Chain Monte
Carlo (MCMC) sampling, to search for “good" models (discussed in
Section 4.2) — the derived tests are expected to be diverse, as well
as achieve high code and model coverage.

Moreover, Stoat adopts a simple yet effective strategy to enhance
MBT: randomly inject various system-level events [44] into UI tests
during MCMC sampling. It avoids the complexity of incorporating
system-level events into the behavior model, and further imposes
the influence from outside environment to detect intricate bugs.

In all, this paper makes the following contributions:
• Model construction. Stoat employs a dynamic analysis tech-
nique, enhanced by a weighted UI exploration strategy and static
analysis, to effectively explore app behaviors and construct mod-
els. The enhancement helps achieve significantly more complete
models, which can cover 17∼31% more code than the models
generated by existing GUI exploration tools.
• Fault detection. We employ Gibbs sampling, an instance of
MCMC sampling, to guide stochastic model-based testing. On
the 93 open-source apps, Stoat achieves satisfactory coverage and
detects about 3X more unique crashes than the state-of-the-art
testing tools, Monkey and Sapienz, which clearly demonstrates
the benefits of our approach. In particular, Stoat detects 91 more
crashes by injecting system-level events during MBT.
• Implementation and evaluation. We have implemented Stoat
as an automated tool and further evaluated it on 1661 most
popular apps fromGoogle Play. Stoat detects 2110 unique crashes
from 691 apps. So far, 20 crashes are confirmed as real faults and
8 are already fixed. The results show that Stoat is effective in
testing real-world apps.

1The early idea of Stoat, named FSMdroid, was presented in [55].

app 2. dynamic UI exploration

devices

(weighted UI exploration)

Phase 1. Model Construction

1. static event identification

5. test generation

9. Gibbs sampling

Test Suite

Phase 2. Model Mutation, Test Generation, and Execution

7. test execution

Test
Coverage

&
Diversity

bug checker

Bug
Report

8. output
measuremnts

(probability-based
test generation)

10. bug diagnosis

stochastic
FSM

p1

p6

p4

p3
p2

p5

0.4 0.6

0.3
0.7

1.0
1.0

Events

States
construct model

initial stochastic FSM

4. mutate
probabilities

System-level
Events

6. inject events

System-level
Events

3. static analysis

Figure 1: Stoat’s workflow.

2 APPROACH OVERVIEW
Stoat operates in a unique two-phase process to test an app. Figure 1
shows its high-level workflow.
Phase 1: Model construction. Stoat first constructs a stochastic
Finite State Machine (FSM) to describe the app’s behaviors. It uses a
dynamic analysis technique, enhanced by a weighted UI exploration
strategy (step 2 in Figure 1), to efficiently explore app behaviors. It
infers input events by analyzing the UI hierarchy of app pages, and
dynamically prioritizes their executions to maximize code coverage.
In addition, to identify some potentially missing events, a static
analysis (step 1) is performed to scan the registered event listeners
in the app code. Stoat records the execution frequencies of all UI
events during exploration, and later uses them to generate the initial
probability values of the transitions in the model. The details will
be explained in Section 3.
Phase 2: Model mutation, test generation, and execution. To
thoroughly test an app, Stoat leverages the model from Phase 1
to iteratively guide test generation toward yielding high coverage
and exhibiting diverse event sequences. In detail, Stoat works as a
loop: randomly mutate the transition probabilities of the current
stochastic model (step 4), generate the tests from the modelw.r.t. the
probabilities (step 5), randomly inject system-level events (analyzed
by static analysis in step 3) into these UI-level tests to enhance MBT
(step 6), replay them on the app (step 7) and collect test results, such
as code and model coverage and event sequence diversities (step 8).

Informed by the test results, Stoat exploits Gibbs sampling to
decide whether the newly proposed model should be accepted or
rejected (step 9), the model with better objective value will be ac-
cepted for the next iteration of mutations and samplings; otherwise,
it will be rejected with certain probability to avoid local optimal
(if rejected, the original model will be reused). Once any bug is
detected (i.e., crash or non-responding), further analysis will be
performed to diagnose the bug with the corresponding test (step
10). The details will be explained in Section 4.
An Illustrative Example. Bites [20] is a simple cookbook app
(shown in Figure 2a) that supports recipe creation and sharing.
A user can create a recipe by clicking the insert menu item in the
Recipes page (page a). When the user taps the name of a recipe, the
app navigates to the Ingredients page (page b), where he/she can

246

Guided, Stochastic Model-Based GUI Testing of Android Apps ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Insert Preferences

IngredientsRecipe Method

(a) Recipes

add shopping list

Recipe MethodIngredients

Insert Send

Preferences

Eggs

Tomatoes

(b) Ingredients

Recipe Ingredients Method

Insert

1 Wash Tomatoes

(c) Method

(e) Insert Method

Insert Method

Crack Eggs

OK Cancel

(d)Insert Method

Insert Method
2

Slice Tomatoes

OK Cancel

(f) Exception

Ok

Unfortunately, Bites has
Stopped.

Step number

(a) Screenshots of a cookbook app Bites.

Recipes Ingredients Method

Method
Menu

Insert
Method

Ingredient
MenuRecipes

Menu

Recipe
Name

entry

e4
(p4)

e5
(p5)

e1
(p1)

e3
(p3)

e2
(p2)

…

e18
(p18)

e17
(p17)

… …

e6 e7
(p7)

e10
(p10)

e8
(p8)

e9
(p9)

e12
(p12)e13

(p13)

e11
(p11)

…

e16
(p16)

e15
(p15)

e14
(p14)

(b) App model of Bites.

Figure 2: Example app Bites and its app model.

view or add ingredients, share them via SMS, or add them into a
shopping list. The user can also switch to the Method page (page c),
where the cooking methods can be viewed. By clicking the insert
menu item, the user can fill in Step number and Method (page d).

Figure 2b shows a part of the constructed app model for Bites,
where each node denotes an app state and each edge a state tran-
sition (associated with a probability value). For example, Recipes
can be navigated to Ingredients when e6 occurs (i.e., click a recipe
item on the Recipes page) with the probability p6. Stoat generates
UI-level tests from this model, and randomly injects system-level
events into them during Gibbs sampling. For example, Bites can
be activated by SMS and Browser to read the recipes shared by
others. During testing, Stoat simulates these system-level events
by sending specific Broadcast Intents to Bites.

3 STOCHASTIC MODEL-BASED TESTING
3.1 Stochastic Model
Stoat uses a stochastic Finite State Machine (FSM) model to repre-
sent an app’s behaviors. Formally, a stochastic FSM is defined as a
5-tupleM = (Q ,Σ,δ ,s0,F), whereQ and Σ are the sets of app states
and input events, respectively, s0 ∈ Q the starting app state, F ⊆ Q
the set of final states, and δ : Q ×Σ→ P(Q × [0,1]) the probabilistic
transition function. P(·) is the powerset operator and each transi-
tion is of the form (s,e, (s ′,p)), meaning that the probability of an
event e triggering a state transition from s to s ′ is p. Let an app
state s have k event transitions (say e1, . . . ,ei , . . . ,ek , 1 ≤ i ≤ k)
and pi is the probability value of ei . For s ,

∑k
i=1 pi = 1 holds.

In our setting, an app state s is abstracted as an app page (repre-
sented as a widget hierarchy tree, where non-leaf nodes denote lay-
out widgets (e.g., LinearLayout) and leaf nodes executable widgets
(e.g., Button)); when a page’s structure (and properties) changes, a
new state is created (e.g., in Figure 2a, the Recipes page and the Ingre-
dients page correspond to two app states). If the app exits/crashes,
the ending state is treated as a final state (e.g., page f). An edge
corresponds to an input event e denoting a UI action (e.g., click,
edit). An app moves from one state s to another state s ′ by han-
dling an input event e . For example, when the user presses themenu

key on the Recipes page, a menu will pop up, and a new app state
(corresponding to Recipes Menu) is created. A probability value p
is assigned to each transition e , denoting the selection weight of e
in test generation. The initial probability values are determined by
the execution frequency of each event during model construction —
p is initially assigned the ratio of e’s observed execution times over
the total execution times of all events w.r.t. s (e ∈ s).

Test Generation from theModel. Stoat adopts a probabilistic strat-
egy to generate event sequences from a stochastic model. It starts
from the entry state s0, and follows the probability values to select
an event from the corresponding app state until the maximum se-
quence length or the ending state is reached. The higher the event
probability value is, the more likely the event will be selected.

3.2 Model Construction
Stoat adopts a dynamic UI exploration strategy, enhanced by static
analysis, to construct the stochastic model for the app under test.
Dynamic UI Exploration. An app can navigate among various
pages with different UIs to provide its functionalities. In order to
efficiently construct more complete behavior models of apps, we
investigated 50 most popular Google Play apps from top 10 cate-
gories (e.g., Education, Business, Tools) and manually explored as
many functionalities as possible. At last, we summarized three ob-
servations that are crucial to improve the exploration performance,
which constitute the basis of our weighted UI exploration strategy:

• Frequency of Event Execution. All UI events are given opportuni-
ties to be executed. The less frequently an event is executed, the
more likely it will be selected during subsequent exploration.
• Type of Events. Different types of events are not equally selected.
For instance, compared with normal UI events (e.g., click), nav-
igation events (e.g., back, scroll, and menu), are given different
priorities to ensure they are triggered at right timing, otherwise
they may drastically undermine the exploration efficiency.
• Number of Unvisited Children Widgets. If an event solicits more
new UI widgets on the next page, it will be prioritized since more
efforts should be spent on pages with new functionalities.

247

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su

To realize these rules, Stoat assigns each event e an execution
weight, which is adjusted dynamically at runtime. The weight of
an event is defined as:

execution_weiдht (e) =
α ∗Te + β ∗Ce

γ ∗ Fe
(1)

whereTe is determined by its event type (1 for normal UI events, 0.5
for back and scroll, 2 formenu),Ce denotes the number of unvisited
children widgets, Fe is its history execution frequencies, and α , β
and γ are the weight parameters.2

Algorithm 1 outlines the stochastic model construction process.
It takes an app as input, and outputs its correspondingmodelM . The
algorithm infers the invocable events E from the current app page s
according to the UI widgets on it, and then adds them into an event
list storing all events during the dynamic analysis (lines 6-7). For ex-
ample, in the app page Insert Method (d) in Figure 2a, since there are
two EditTexts (“Step number" and “Method") and two Buttons
(“Ok" and “Cancel") (the clickable properties of them are true),
Stoat infers four events, i.e., edit(“Step number"), edit(“Method"),
click(“Ok"), and click(“Cancel"). Before each execution, the weights
of all events in the list will be updated w.r.t. Formula (1) (lines 8-9).

An event e with the maximum weight (computed by function
getMaxWeightEvent) on the page s is chosen to execute (lines 10-
11). The function expandFSM accepts the returned state and the
executed event to construct the model (line 15). At last, all transi-
tions ofM are assigned with the initial probability values according
to their observed execution times (lines 17, and 18-24).

During the UI exploration, if the app enters into an unknown state
(e.g., the app crashes, exits, becomes non-responding, or navigates
to an irrelevant app) after some event is executed, restoreApp
will be executed to restart the app or navigate the app back to the
previous page (lines 12-14). This unknown state is taken as a final
state. This event will be added in Tabu, and excluded from further
executions (line 10) to prevent affecting modeling efficiency.
Static Event Identification. The dynamic analysis technique typ-
ically infers events from the UI hierarchy (dumped by Android
UIAutomator [27]), which only captures static GUI layout informa-
tion. However, it may miss some dynamic events, e.g., amenu action
of an Activity that can only be invoked by pressing the menu key, or
some events that are programmed in the app code, e.g., a longClick
action registered on a TextView. To further improve modeling ca-
pability, Algorithm 1 uses static analysis to identify these potential
events that are missed by dynamic analysis (line 4). It detects events
by scanning the event listeners in the app code, and then associates
these events to the widgets observed at runtime via their unique re-
source IDs. Stoat detects the events that are registered on UI widgets
(e.g., setOnLongClickListener) and implemented by overriding
class methods (e.g., onCreateOptionsMenu).
Model Compaction. The number of an app’s states and transitions
can be large or even unbounded [7, 15, 42, 50, 67]. To improve the
testing efficiency, Stoat compacts the model by identifying only
structurally different pages as different states, and merges similar
ones. In detail, (1) the hierarchy tree of an state is encoded into
a string, and converted into a hash value for efficiently detecting
duplicate states; (2) minor UI information, e.g., text changes (e.g.,
2The weight parameters are tuned during our investigation on the 50 Google Play
apps, but are kept unchanged for all the apps during the final evaluation.

Algorithm 1: App Stochastic Model Construction
Input: the app under test A
Output: the stochastic model M

1 letW be a list of events (initialized as empty)
2 let s be the starting page of the app
3 let Tabu be a tabu event list (initialized as empty)
4 W ←W ∪ {UI events identified by static analysis}
5 repeat
6 let E be the set of invocable events inferred from s
7 W ←W ∪ E
8 foreach event e ∈W do
9 updateWeight(e)

10 let e = getMaxWeightEvent(E \Tabu , s)
11 let s = execute(e)

// Tabu special events that trigger unknown states
12 if s is an unknown state then
13 Tabu ← Tabu ∪ {e }
14 restoreApp()// Restart/recover the app to the previous page

15 M ← expandFSM(s , e)
16 until t imeout
17 return assignProbability(M)

18 Procedure assignProbability(M)
19 S ← getAppStates(M) // S={s1,..., si ,..., sn }

// assign the initial probability values for each transitions of si
20 foreach state si ∈ S do
21 Ei ← getEvents(si) // Ei={e1,..., ej ,..., ek }
22 foreach transition ej ∈ Ei do

// pj is the probability value of the transition ej
23 totalTimes = getAllExecutionTimes(e1,..., ej ,..., ek)
24 pj ← getExecutionTimes(ej)/totalTimes

25 return M

the contents of TextViews/EditTexts) and UI property changes
(e.g., the checked property of RadioButtons/CheckBoxs), is omitted
without creating new states; (3) ListViews are only differentiated
as empty and non-empty. For example, in Figure 2a, the app pages
(d) and (e) correspond to the same state, since only the contents in
EditTexts are different.

4 GUIDED STOCHASTIC MODEL MUTATION
Stoat exploits Gibbs sampling to guide themutation of the stochastic
model so that a set of representative tests can be generated. In
our setting, we intend to find “good” models, from which the test
suites can achieve our desired goal. We view this problem as an
optimization procedure guided by our fitness function.

4.1 Gibbs Sampling
Gibbs Sampling [5, 64], is a special case of the Metropolis-Hastings
algorithm [65]. TheMetropolis-Hastings algorithm is one ofMarkov
Chain Monte Carlo (MCMC) methods [14], which are a class of
algorithms to draw samples from a desired probability distribution
p (x), for which direct sampling is difficult. It iteratively generates
samples from a function λ that is proportional to the density of
p (x). The sampling process generates a Markov chain, where the
selection of the current sample only depends on the previous one.

248

Guided, Stochastic Model-Based GUI Testing of Android Apps ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

After a number of iterations, these samples can closely approximate
the desired distribution p (x), allowing more samples are generated
from more important regions (the regions with higher densities).

During sampling, a candidate sample will be accepted or rejected
with certain probability, and this probability is determined by com-
paring the λ values between the current and the candidate sample.
Formally, in the t th iteration, the candidate sample x ′ is generated
w.r.t. a proposal density q(x ′ |xt), and its acceptance ratio is

AcceptRatio(x ′) = min(1,
p (x ′) ∗ q(x ′ |xt)

p (xt) ∗ q(xt |x ′)
) (2)

Usually, q is selected as a symmetric function. Thus Formula (2)
can be simplified to

AcceptRatio(x ′) = min(1,
p (x ′)

p (x)
) (3)

4.2 Objective Function
We designed an objective function favoring test suites that can
achieve high coverage and contain diverse event sequences. Such test
suites are expected to trigger more program states and behaviors,
and thus increase the chance of detecting bugs.

Our objective function combines three metrics, namely code cov-
erage, model coverage, and test diversity. Code coverage [56, 71]
measures how thoroughly the app code is tested; model cover-
age [43] measures how completely the app model is covered, and
test diversity [49] measures how diverse the event sequences are in
the test suite, which is a significant complement for the coverage
metrics. The objective function is formalized as:

f (T) = α ∗CodeCoveraдe (T) + β ∗ModelCoveraдe (T)

+ γ ∗TestDiversity (T)

where T is the test suite generated from a stochastic modelM , and
α ,β ,γ are the weights on these metrics3.

Here, code coverage is computed as either statement coverage
for open-source apps [52], or method coverage for closed-source
apps [3]. For model coverage, we use edge coverage to compute
how many events are covered.

For test diversity, we designed a lightweight yet effective metric
to evaluate the diversity of test cases. Let T be an N -size test suite
{l1, . . . ,li , . . . lN } , where li is an event sequence. A k-length event
sequence l can be denoted as e1 → . . . ei → . . . ek , where ei is
an event. The key idea is to compute the “centroid” [11] of these
N sequences, and take the sum of their Euclidean distances with
the “centroid" as the diversity value of T . Intuitively, the larger the
distance is, the more diverse T is.

First, we use a binary vector to present each sequence. Let the
modelM has Ne unique events. The event e can be presented as a
N -dimensional vector e⃗ = (ε1, . . . ,εi , . . . ,εNe), where εi is 0 if the
event e is the i-th event in the event list, otherwise 1 (the values are
set in this way to avoid the orthogonality of two vectors). Second,
let l be a n-length sequence, represented as l⃗[n] = e1 → e2 · · · → en .
We use the function below to recursively transform l into a vector
l⃗ on the basis of its events and their orders:

l⃗[i] = cos_sim (⃗l[i−1], l⃗[i−1] + e⃗i) · (⃗l[i−1] + e⃗i)

3The values of α , β , and γ are respectively set to 0.4, 0.2, and 0.4 in the evaluation,
which give more weights on code coverage and test diversity without any tuning.

where l⃗[i] is the i-length prefix of l⃗[n], i.e., e1 → e2 . . . → ei ,
and l⃗[1] = e⃗1. We use the cosine similarity [63] between l⃗[i−1]
and l⃗[i−1] + e⃗i , i.e., cos_sim (⃗l[i−1], l⃗[i−1] + e⃗i), to encode the or-
der relation l[i−1] → ei into the vector l⃗ . By this way, we can
take both the contained events and their orders into consideration
when computing test diversity. After we obtain the vector set for
T = {⃗l1, . . . , l⃗i , . . . , l⃗N }, the centroid C⃗ of T can be computed as

C⃗ =
∑N
i=1 l⃗i
N . Last, the test diversity is computed by the formula:

TestDiversity (T) =

∑N
i=1 d (⃗li ,C⃗)

N

To fit into the objective function, we scale the test diversity into
the range of [0, 1] by dividing Ne .

4.3 Gibbs Sampling Guided Model Mutation
In our problem, we choose Gibbs sampling instead of the standard
Metropolis-Hastings algorithm because it is specially designed to
draw samples when p (x) is a joint distribution of multiple random
variables. In particular, we let all transition probabilities be ran-
dom variables, and draw samples by iteratively mutating them. It
allows samples to be drawn more often from the region with “good”
stochastic models. We hypothesize that tests derived from the opti-
mized model can achieve higher objective values. For this reason,
we set the target probability density function p (x), by following a
common method [25, 53], as

p (M) =
1
Z
exp (−β ∗ f (TM))

where M is the stochastic model, and Z a normalizing partition
function, β a constant,TM the test suite generated from the current
modelM , and f the objective function. According to Formula (3), the
acceptance ratio4 of the newly proposed modelM ′ can be reduced
to

AcceptRatio(M→M ′)=min(1,exp (−β ∗ (f (TM) − f (T ′M ′)))

Stochastic Model Mutation. Algorithm 2 gives the algorithm of
Gibbs sampling guided testing. The search space is the domain of
stochastic models, in which each sample is one stochastic model. At
each iteration, a new candidate modelM ′ is generated by mutating
the transitions’ probability values in the current modelM .

Let the app have n app states, s1, . . . ,si , . . . ,sn , and each state
si (1 ≤ i ≤ n) have k event transitions, e1, . . . ,ej , . . . ,ek . Stoat ran-
domly decides whether to mutate the transition probabilities or not
of each app state si (lines 3-9). If the state si is selected, Stoat will
randomly mutate the original probability value pj of the transition
ej to a new probability value p′j , which is the result of pj+mSize

or pj -mSize . The intuition is that the newly generated probability
value p′j is around pj (it can be higher or lower than pj), so that
the new model M ′ can generate very different event sequences
compared withM . To speed up the convergence,mSize is set as a
fixed value (e.g., 0.1) in implementation. For the remaining transi-
tion probabilities, a similar procedure is applied, but the constraint
p′1+. . .+p

′
j+. . .+p

′
k= 1 still holds. For the other unselected states,

their transition probabilities are kept unchanged so that the new
4β is empirically selected as -0.33 in our problem, which is tuned to effectively differ-
entiate acceptance ratio.

249

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su

Algorithm 2: Gibbs sampling Guided GUI Testing
Input: the app under test A, its stochastic model M , and the related

system-level events set Ks
Input: the maximum iteration of Gibbs Sampling Imax

1 repeat
2 S ← getAppStates(M) // S={s1,..., si ,..., sn }

// M is randomly mutated to M ′

3 foreach state si ∈ S do
4 if Rand(0,1) > 0.5 then
5 Ei ← getEvents(si) // Ei={e1,..., ej ,..., ek }
6 foreach Transition ej ∈ Ei do
7 pj ← getProbability(ej)
8 p′j ← randomlyMutate(pj , mSize)
9 pj ← p′j // p

′
j ∈ (0,1) and p

′
1 + ... + p′j + ... + p′k=1

10 T ′ ← generateTestSuite(M ′) // T ′={t ′1,..., t
′
i ,..., t

′
n }

// T ′ is randomly injected with system-level events
11 foreach event sequence t ′i ∈ T

′ do
12 if Rand(0,1) > 0.5 then
13 i ← getRandomEventIndex(t ′i)
14 es ← selectOneSystemEvent(Ks)
15 injectEvent(t ′i , es , i)// insert es into the event position i

16 execute(A, T ′)
17 if A crashes or is non-responding then
18 record the error stack

19 if AcceptRatio(M , M ′) > Rand(0,1) then
20 M ← M ′

21 until Imax is reached OR timeout

modelM ′ conditionally depends on the previous modelM by those
mutated probability values.

To simulate the interactions of environment, Stoat randomly
injects system-level events into the generated tests T ′ from the
mutated modelM ′ (lines 11-15). Then T ′ is replayed on the app to
validate its behaviors. The test results of T ′ are used to determine
the acceptance ratio of M ′. If T ′ can improve the objective value,
M ′ will be mutated in the next iteration (lines 19-20). Otherwise,
the originalM is mutated. The algorithm continues until the testing
budget is exhausted. If the app crashes or becomes non-responding,
a suspicious bug is recorded (lines 17-18), and the corresponding
error stack is dumped for bug diagnosis.

4.4 System-level Events
To incorporate system-level events into mode-based testing, Stoat
adopts a simple yet effective strategy by randomly injecting them
into UI-level event sequences. This strategy avoids the complexity of
including system-level events into the behavior model, and further
interleaves both types of events to detect intricate bugs.

Currently, Stoat supports three sources of system-level events:
(1) 5 user actions (i.e., screen rotation, volume control, phone calls,
SMSs, app switch); (2) 113 system-wide broadcast intents (e.g.,
battery level change, connection to network) to simulate system
messages; (3) the events that the apps are particularly interested
in, which are usually declared by the tags <intent-filter> and
<service> in their AndroidManifest.xml files.

5 EVALUATION
The evaluation aims to answer the four research questions:
RQ1. Model Construction. Compared with the existing model

construction tools for GUI testing, how effective is Stoat?
RQ2. Code Coverage. Compared with the state-of-the-art testing

tools, how is the coverage achieved by Stoat?
RQ3. Fault Detection. Compared with the state-of-the-art testing

tools, how is the fault detection ability of Stoat?
RQ4. Usability and Effectiveness. How is the usability and ef-

fectiveness of Stoat in testing real-world apps?

5.1 Tool Implementation
Stoat is implemented as a fully automated app testing framework,
which reuses and extends several tools: Android UI Automator [27,
33] and Android Debug Bridge (ADB) for automating test execution;
Soot [22] and Dexpler [8] for static analysis to identify potential in-
put events; Androguard [58] for analyzing the system-level events
that the apps are particularly interested in. Stoat currently sup-
ports click, touch, edit (generate random texts of numbers or
letters), navigation (e.g., back, scroll, menu). During Gibbs sam-
pling, Stoat generates a test suite with the maximum size of 30 tests
and each with a maximum length of 20 events at each sampling
iteration. Stoat instruments open-source apps by Emma [52] to get
line coverage; and instruments closed-source apps by Ella [3] to
get method coverage. To improve scalability, Stoat is designed as a
server-client mode, where the server can parallelly control multiple
Android devices. Stoat is online available at [24].

5.2 Evaluation Setup
Environment. Stoat runs on a 64-bit Ubuntu 14.04 physical ma-
chine with 12 cores (3.50GHz Intel Xeon(R) CPU) and 32GB RAM,
and uses Android emulators to run tests. Each emulator is config-
ured with 2GB RAM and X86 ABI image (KVM powered), and the
KitKat version (SDK 4.4.2, API level 19). Different types of external
files (including 5 JPGs/3 MP3s/3 MP4s/10 VCFs/3 PDFs/3 TXTs/3
ZIPs) are stored in the SDCard to facilitate file access from apps.
Subjects.We conducted three case studies. In Study 1 and 2, to set
up a fair comparison basis, we chose 68 benchmark apps, which
have been widely used in previous research work [7, 15, 16, 39–
41, 45, 67]. These apps come from F-droid [30], a popular open-
source app repository. To further reduce the potential bias, we
enriched them by randomly selecting 25 new apps from F-droid. So
we totally evaluated on 93 apps. In Study 3, Stoat is applied to test
1661 most popular apps from Google Play of various categories.

In Study 1, we answer RQ1 by comparing Stoat with MobiGUI-
TAR [2] and PUMA [32]. Both tools produce similar FSM models.
MobiGUITAR implements a systematic and a random exploration
strategies for constructing models: The former visits widgets in a
breadth-first order, and restarts the app when no widgets can be
found, and the latter randomly emits UI events. PUMA uses UIAu-
tomator to sequentially explore GUIs, and stops exploring when all
app states have been visited. Stoat is not comparedwith othermodel-
based tools because they are either unavailable (e.g., ORBIT [67]
and AMOLA [31]) or crash frequently (e.g., Swifthand [15]).

We run each tool on one emulator, and test each app for 1 hour,
and measure the code coverage to approximate the completeness of

250

Guided, Stochastic Model-Based GUI Testing of Android Apps ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

the constructed models, which is the basis of model-based testing.
We also record the number of states and edges in the models to
measure the complexity. Intuitively, the higher the code coverage,
the more compact the model is, the more effective the tool is.

In Study 2, we answer RQ2 and RQ3 by comparing Stoat with
these tools: (1) Monkey (random fuzzing), (2) A3E [6] (systematic
UI exploration), and (3) Sapienz (genetic algorithm) [41]. Moneky,
A3E, and Sapienz are the state-of-the-art GUI testing tools. They
have the best performance in their own approach categories [16].
Specifically, Monkey emits a stream of random input events, includ-
ing both UI and system-level events, to maximize code coverage.
A3E systematically explores app pages and emits events by a depth-
first strategy, which is also widely adopted in other GUI testing
tools [1, 42, 67]. Sapienz uses Monkey to generate the initial test
population, and adapts genetic algorithms to optimize the tests to
maximize code coverage while minimizing test lengths.

We allocate 3 hours for each tool to thoroughly test each app on
one single emulator. Stoat allocates 1 hour for model construction
and 2 hours for Gibbs sampling. We record code coverage and the
number of unique crashes. To eliminate randomness, we run each
app for five times, and take the average values as the final results.
During testing, we identify crashes by monitoring Logcat [26] mes-
sages. Note each unique crash has a unique error stack; unrelated
crashes (e.g., errors from Android system, test harness, and caught
exceptions [47]) are excluded. If a tool covers more code and detects
more unique crashes, it is more effective.

In Study 3, we answer RQ4 by running Stoat on 1661 most
popular apps from Google Play. Stoat run each app for three hours
with the same configuration in Study 2. Stoat instruments these apps
at the method level to collect code coverage for Gibbs sampling.

5.3 Study 1: Model Construction
Model Completeness Figure 3(a) shows the achieved line cover-
age w.r.t. the models constructed by PUMA (denoted by “PU"),
MobiGUITAR-systematic (“M-S"), MobiGUITAR-random (“M-R"),
and Stoat (“St") on the 93 subjects (listed in the first column of Ta-
ble 1). On average, Stoat covers 31% and 17%more code, respectively,
thanM-S andM-R, and 23%more than PUMA. It indicates that Stoat
can cover more app behaviors, and produce more complete models.
MobiGUITAR cannot exhaustively explore app behaviors due to its
simple exploration strategies. For example, the systematic strategy
is surprisingly much less effective than the random strategy, since
it visits UIs in a fixed order (breadth-first) and wastes much time
on restarting the app when no new UI widgets are found. PUMA
continues the exploration until all different app states have been
visited, which can save the exploration efforts but may also miss
new UI pages due to its abstraction of states is too coarse.
Model Complexity Figures 3(b) and 3(c) show the size of the mod-
els in terms of the number of states and transitions (Note the Y-axis
uses a logarithmic scale). We can see Stoat achieves much higher
code coverage than the other tools (indicated by Figure 3(a)), but
its models are more compact without states explosion (Figure 3(b)).
In addition, Stoat captures more app behaviors/events (one transi-
tion denotes one event in Figure 3(c)) than the other tools, which
indicates its models are more complete. In detail, MobiGUITAR

Table 1: Testing results on 93 open-source apps.

Subject Coverage (%) Crashes
Name ELOC A M Sa St A M Sa St
a2dp

aarddict
aLogCat
Amazed
AnyCut

baterrydog
swiftp

Book-Catalogue
bites

battery
addi

alarmclock
manpages
mileage

autoanswer
hndroid

multismssender
worldclock
Nectroid
acal

jamendo
aka

yahtzee
aagtl

CounterdownTimer
sanity

dalvik-explorer
Mirrored
dialer2

DivideAndConquer
fileexplorer
gestures
hotdeath
adsdroid
myLock

lockpatterngenerator
mnv
aGrep
k9mail

LolcatBuilder
MunchLife
MyExpenses

LNM
netcounter
bomber

frozenbubble
fantastichmemo

blokish
zooborns

importcontacts
wikipedia

PasswordMaker
passwordmanager

Photostream
QuickSettings

RandomMusicPlayer
Ringdroid
soundboard

SpriteMethodTest
SpriteText
SyncMyPix

tippy
tomdroid
Translate
Triangle

weight-chart
whohasmystuff
Wordpress

BabyCareTimer
Yaab

campyre
URLazy
arXiv
h2droid

Cetoolbox
CurrencyConverter

charmp
NanoConverter

anarxiv
kindmind
URforms

Homemanager
PocketTalk

Rot13
Angulo

RightAlert
AppTrack
TextEdit
Diary
Rtltcp

fakedawn
klaxon
Imcktg

3576
2200
846
253
348
466
2160
9847
1027
251
20019
2453
301
4699
387
968
792
1156
2459
17453
4398
1249
504
11747
584
4935
1283
825
897
768
35
33
3890
153
791
617
3715
862
22823
578
163
2984
399
2370
283
1643
8886
1164
759
1115
719
1469
10791
1307
2883
318
2973
18
948
1166
4072
995
1484
711
284
1054
640
10526
3048
1921
1462
185
2093
917
1118
774
117
1199
1140
1730
2560
1329
444
100
627
238
1116
1387
195
669
1300
814
639

14
11
36
60
2
4
15
3
3
51
16
14
44
2
6
6
13
83
24
6
12
15
3
9
40
4
23
2
28
43
62
30
2
7
5
57
5
7
3
7
45
12
18
23
76
28
5
34
16
2
18
29
4
6
20
5
-
96
72
53
4
47
1
28
56
24
43
1
16
8
9
25
9
41
26
41
60
11
22
28
40
21
29
64
48
71
38
11
36
6
34
11
42

42
69
71
77
67
72
13
43
39
74
17
74
44
48
8
2
44
93
36
22
62
81
64
26
64
34
71
11
39
91
60
46
80
26
28
88
37
55
6
14
93
53
63
44
78
70
16
46
35
81
36
61
3
23
56
61
20
90
78
61
21
88
48
49
82
74
80
5
36
47
6
19
45
78
56
77
88
57
51
59
58
54
33
95
52
85
76
63
94
34
58
42
84

39
13
72
78
70
71
13
25
35
91
19
71
82
48
9
11
61
95
76
29
55
82
52
29
64
19
74
33
42
88
60
52
57
38
29
83
49
-
7
18
87
51
62
68
79
-
42
52
34
42
27
49
7
29
51
59
60
54
76
63
20
86
57
50
65
80
79
6
45
48
13
20
13
84
53
66
86
43
62
53
75
54
33
-
59
91
70
56
92
31
57
41
73

49
66
80
87
83
66
18
23
57
93
17
77
75
44
25
10
76
98
71
26
78
82
71
35
86
39
75
50
82
92
61
48
70
28
46
78
56
54
8
24
85
63
64
79
78
72
48
58
36
79
31
74
7
28
41
88
-

100
87
59
27
89
58
49
75
81
84
8
55
47
15
26
62
45
91
81
97
54
63
57
82
57
92
96
77
93
84
62
95
42
64
69
90

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
2
1
0
0
1
1
6
3
5
0
6
0
1
0
0
0
3
2
1
1
3
0
1
1
3
0
1
0
0
1
1
0
0
2
3
0
0
0
1
0
1
0
0
1
1
0
0
0
4
0
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
1
2
0
2
0
0
0
0
1
1
1
2
2
0
0
0
1
1
0
1
1
0
0
0

1
1
0
1
0
0
0
0
1
4
1
4
1
4
0
1
0
1
0
2
1
5
0
2
0
1
2
1
0
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
4
1
0
0
4
3
0
1
1
0
5
0
0
0
1
0
2
0
0
2
0
2
0
1
2
0
2
0
0
0
0
0
0
1
3
2
0
0
0
2
6
0
2
2
0
0
1

4
3
0
0
1
0
1
4
4
2
3
3
3
13
2
1
2
2
3
5
6
1
2
3
0
1
6
5
4
0
0
0
0
2
3
0
4
2
15
0
0
3
5
4
1
0
20
2
3
1
0
13
0
2
2
2
1
0
0
0
2
0
1
0
0
3
4
13
4
1
5
1
5
2
1
0
1
0
4
7
2
2
0
0
0
2
2
1
1
2
7
5
2

determines the equivalence of app states on the basis of the prop-
erties (ids and types) of their constitutive UI objects, while PUMA
differentiates states according to their UI features (e.g., the num-
ber of invocable events). However, these criteria are too coarse
to construct representative models. In contrast, Stoat uses the UI
layout structures to decide the state similarity and merges states
with neglectable differences. Therefore, the models constructed by
Stoat would be more effective for Gibbs sampling.

251

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su
Li

ne
 C

ov
er

ag
e

#M
od

el
 S

ta
te

s
0	

20	

40	

60	

80	

100	

1	

10	

100	

1000	

1	

10	

100	

1000	

PU M-S M-R St PU M-S M-R St StM-S M-RPU

(a) Line Coverage (b) #Model States (c) #Model Transitions

#M
od

el
 T

ra
ns

iti
on

s

Figure 3: Results of model construction.

0	

20	

40	

60	

80	

100	

0	

20	

40	

60	

80	

100	

0	

20	

40	

60	

80	

100	

0	

20	

40	

60	

80	

100	

Li
ne

 C
ov

er
ag

e

A StSaM A StSaM A StSaM A StSaM

Figure 4: Results of code coverage grouped by app sizes.

5.4 Study 2: Testing Effectiveness
Code Coverage Table 1 lists 93 subjects and their executable lines
of code (ELOC), and shows the testing results of A3E (“A"), Monkey
(“M"), Sapienz (“Sa") and Stoat (“St") in terms of line coverage and
the number of unique crashes (best results are highlighted). On
average, they achieve 25%, 52%, 51%, and 60% line coverage, respec-
tively. In particular, Stoat achieves nearly 35% higher coverage than
A3E. Figure 4 shows the line coverage of these tools grouped by
app sizes. It is clear that Stoat has the best performance.

A3E achieves much lower coverage than the other three tools
for two main reasons. First, A3E explores UIs in a depth-first order.
Although this greedy strategy can reach deep UI pages at the be-
ginning, it may get stuck because the order of event execution is
fixed at runtime. Second, A3E does not explicitly revisit previously
explored UIs, and thus may fail in covering new code that should
be reached by different sequences. We also note Monkey’s coverage
is close to Sapienz’s when given enough testing time (3 hours).
Unique Crashes Table 2 summarizes the statistics of the four tools
in detecting app crashes. Stoat has detected 249 unique crashes from
68 buggy apps, which is much more effective than A3E (8 crashes),
Monkey (76 crashes), and Sapienz (87 crashes). We also find Stoat
has detected all the crashes that were found by A3E. Fig. 5 gives
the pairwise comparison of crashes detected by Monkey, Sapienz,
and Stoat. We can see the crashes detected by Stoat have much less
overlapwithMonkey and Sapienz. In detail, Stoat detected exclusive
227 and 224 crashes than Monkey and Sapienz, respectively. The
crashes detected by Monkey and Sapienz are close in number, and
they have more overlap (33 bugs are detected by both). The fact that
Sapienz uses Monkey to generate the initial population of event
sequences may explain this phenomenon.
Method of Calculating Unique Crashes Stoat identifies unique
crashes in an accurate way: (1) remove all unrelated exceptions
without the keyword of the app’s package name; (2) extract the
exception lines from the crash stack of the app; (3) use these lines
to identify unique crashes. Different crashes should have different
sequences of exception lines. However, we find Sapienz simply uses
text differences to count unique crashes, which is inaccurate and

Table 2: Testing statistics of A3E,Monkey, Sapienz and Stoat.

Tool #Buggy Apps #Unique Crashes
A3E

Monkey
Sapienz
Stoat

8
40
43
68

8
76
87
249

0	

50	

100	

150	

200	

250	

300	

Sapienz	 Stoat	
0	

50	

100	

150	

200	

250	

300	

Monkey	 Stoat	
0	

20	

40	

60	

80	

100	

Monkey	 Sapienz	

76

22

249

33

76
87

25
87

249

Figure 5: Pairwise comparison of tools in detecting crashes.

thus may bring false positives. To set up a fair comparison basis,
we modified Sapienz’s scripts to follow our method.

5.5 Bug Analysis
To further investigate the effectiveness of Stoat, we analyzed several
typical crashes that were found by Stoat but missed by Monkey
and Sapienz. We summarized the following key findings.
Finding 1: Stoat is more effective in UI exploration. Both Stoat
and Sapienz are two-phase testing techniques. Sapienz uses Monkey
to generate the initial population of event sequences (including both
UI and system-level events) before genetic optimization, while Stoat
constructs app models (only by UI events) before Gibbs sampling.
In Figure 6(a), we show the coverage achieved by Sapienz (denoted
by “Sa") and Stoat (“St") on the 93 subjects in their respective initial
phases (i.e., the population generation phase and the model construc-
tion phase). By default setting, Sapienz and Stoat on average take
56 and 60 minutes to finish the initial phase, and require 45 and
23 minutes to reach peak coverage, respectively. We can see that
Stoat achieves higher coverage than Sapienz, which enables Stoat
to detect more crashes in the optimization phase.

For example, Stoat detects a CursorIndexOutOfBoundsException
in the app Bites [20] (Figure 2a) during model construction. This
crash can be revealed by a long event sequence: create a recipe (fill
in names, authors, and descriptions), long touch on it, and then
select the option of “send by SMS" from the other fours. However,
Sapienz has never reached this usage scenario in the initial phase
due to its randomness. By utilizing this captured behavior, Stoat
further detects a new crash during Gibbs sampling, which can only
be revealed when the user fills the ingredients of this recipe but
leaves its cooking methods empty, and sends it by SMS. However,
Sapienz has never detected this new crash during optimization.
Finding 2: Stoat is more effective in detecting deep crashes.
Both Stoat and Sapienz use optimization techniques to guide test
generation. However, Sapienz generates new tests by randomly
crossovering and mutating sequences. It may produce many “infea-
sible" ones, and is less likely to reach deep code. In contrast, Stoat
guides test generation from an app’s behavior model (captures all
possible compositions of events), which is more likely to generate
meaningful and diverse sequences to reveal deep bugs.

For example, TextEdit [59] is a text edit app. Stoat exposes a
NullPointerException by following a 7-length event sequence.

252

Guided, Stochastic Model-Based GUI Testing of Android Apps ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

0	

50	

100	

150	

200	

250	
sapienz	
stoat	
stoat-wo-sys	

0	

20	

40	

60	

80	

100	

(a) line coverage achieved
in the initial phase

Sa St

(b) #unique bugs detected in
different phases

#U
ni

qu
e

C
ra

sh
es

Li
ne

 C
ov

er
ag

e

224

666458
3739

Initial
Phase

Opt.
Phase

Both
Phase

133

Figure 6: Comparison between Sapienz and Stoat

The exception is thrown when a non-existing file is accessed af-
ter the default file name prefix “/sdcard/” is removed. The code
snippet below shows when the user tries to access a non-existing
file, the app will remind that the file cannot be found (the case
DIALOG_NOTFOUND_ERROR at Lines 9-10), and reopen the previous
dialog to accept new file names (the case DIALOG_OPEN_FILE at
Lines 2-7). However, the variable errorFname stores the previous
non-existing file name, e.g., “test”. Thus the appwill call getParent()
at Line 7 and return null because the file does not exist. The next
call to toString crashes the app.

1 /* the dialog for opening files */
2 case DIALOG_OPEN_FILE :
3 i f (open ingEr ro r) {
4 F i l e f = new F i l e (errorFname . t o S t r i n g ()) ;
5 i f (f . t o S t r i n g () . e qu a l s (" / ")) . . .
6 e l se i f (f . i s D i r e c t o r y ()) . . .
7 e l se i f (f.getParent().toString() . e qu a l s (" / ")) . . . } . . .
8 /* the dialog for file not found */
9 case DIALOG_NOTFOUND_ERROR : { . . .
10 showDialog (DIALOG_OPEN_FILE) ; } . . .

As Figure 6(b) shows, Stoat detects many more crashes than
Sapienz in the optimization phase (224 vs. 66). The numbers of
crashes in their initial phases are close, but Sapienz generates both
UI and system-level events while Stoat only generates UI events.
Finding 3: System events can reveal more unexpected crashes.
During Gibbs sampling, Stoat randomly injects system-level events
into UI-level event sequences, to enhance MBT. As Figure 6(b)
shows, by this enhancement, Stoat can detect additional 91 crashes
(see the “stoat" and “stoat-wo-sys" columns in the optimization
phase). For example, the appmileage [21]was crashed by IllegalAr
gumentException when Stoat launches its chart activities and
sends them empty intents. The app directly takes the null val-
ues to make database queries without any sanitization.

From the above analysis, we can see Stoat is more effective than
the other tools in bug detection. The models help Stoat generate
more meaningful event sequences, and the tests are effectively
guided to reach different corner cases. However, Monkey/Sapienz
can also detect some crashes that Stoat cannot find. We summa-
rized two main reasons: (1) Monkey supports irregular actions,
e.g., PinchZoom, flip, which have not been included in our app
models; (2) Monkey can reveal some stress-testing bugs (it con-
tinuously emits events without waiting the previous ones take ef-
fect), e.g. some concurrency crashes [9] (IllegalStateExceptions
triggered by the synchronizations between ListViews and their
data adapters), some IllegalArgumentExceptions triggered by

Table 3: Distribution of the detected crashes by Stoat in
Google Play apps.

ID Exception Type Number

1 NullPointerException 1226
2 Windows Leaked Exception 255
3 ActivityNotFoundException 191
4 SQLite Related Exception 71
5 IllegalStateException 47
6 IllegalArgumentException 37
7 RuntimeException 21
8 ClassCastException 9
9 UnsatisfiedLinkError 8
10 WindowManager$BadTokenException 4
11 Other Exceptions 233

the mismatches of service binding/unbinding due to quick switches
of activity lifecycle callbacks, and some OutOfMemoryErrors.

5.6 Study 3: Usability on Real-world Apps
To further validate the usability of Stoat, we apply it on the most
popular apps from Google Play. Stoat was run on 3 physical ma-
chines with 18 emulators and 6 phones (allocate 3 hours per app).
In one month, it successfully tested 1661 apps, and detected 2110
unique unknown crashes from 691 apps: 452 crashes from model
construction, 1927 crashes from Gibbs sampling, and 269 crashes
are detected in both phases. We have sent all the bug reports to
the developers. So far, 43 developers have replied that they are in-
vestigating our reports (excluding auto-replies). 20 of our reported
crashes have been confirmed, and 8 have already been fixed.

Table 4 shows the parts of bugs found by Stoat, where we list
the app names, the categories, the installations, the crash types, the
brief descriptions of root causes, and their statuses (confirmed or
fixed). During the evaluation, we totally found 23 different types of
crashes. Table 3 shows the distribution of their numbers. We can see
NullPointerException is the most common type of exceptions,
which aligns to previous case studies [39, 41].

5.7 Limitations and Threats to Validity
Stoat has some limitations. First, during testing, Stoat emits an
event, waits until it takes effect, and then emits the next one. This
synchronization ensures test integrity, but it may miss those bugs
that can only be manifested by swift actions. Second, Stoat may
generate “infeasible" event sequences from models. To mitigate
this problem, Stoat locates UI widgets by object indexes instead
of some volatile properties (e.g., texts), and skips events when the
target UI cannot be located. Third, the models produced by Stoat
are still not complete since it cannot capture all possible behaviors
during UI exploration, which is still an important research goal on
GUI testing [16]. For example, Stoat is ineffective on the apps with
irregular gestures (e.g., PinchZoom, Drawing) and specific input
data formats. Future work may integrate symbolic execution, string
analysis or learning algorithm [38] to tackle such issues.

We mitigate threats to validity in two aspects: (1) eliminate false
positives by excluding irrelevant crashes and collecting unique
ones, manually inspecting all crashes from open-source apps, and
refining crash reporting via developer feedback on the submitted
crash reports. (2) apply each testing tool on each app multiple
times to mitigate algorithm randomness (Future work may adopt
statistical analysis to further strengthen the results).

253

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su

Table 4: Parts of Bugs found by Stoat and confirmed as real faults.

ID App Name Category Installation Crash Exception Description Status

1 P* News 10M-50M NullPointerException Unable to destroy the PremiumSettingsActivity activity Confirmed
2 M* Wallpapers 1M-5M InstantiationException Fail to instantiate the CropImageView activity Fixed
3 PI* Pictures 1M-5M SQLiteCantOpenDatabaseException Fail to open database files when an activity is launched Confirmed
4 A* Photography 50M-100M StaleDataException Attempted to access a database cursor after it has been closed Fixed
5 N* Email 1M-5M NullPointerException Unable to start the TimeChangeReceiver receiver Fixed
6 Ni* Navigator 5K-10K NetworkOnMainThreadException Attempted to perform a networking operation on the main application thread Confirmed
7 Z* Utility Tool 10M-50M ServiceConnectionLeaked Forget to call unbind to release the service resource Fixed
8 I* Browser 1M-5M NullPointerException Unable to start the OrbotActivity Activity Confirmed
9 C* Pictures 10M-50M ActivityNotFoundException No Activity found to handle the specified Intent in the activity of ImageSelectActivity Fixed
10 A* Alarm Clock 5M-10M WindowManager$BadTokenException Unable to add window when the CheckShareService notifies users from background Fixed
11 Re* Life Style 10M-50M IndexOutOfBoundsException Access invalid index -1 in the bottomsheet list Fixed
12 Pl* Video 1M-5M NullPointerException An error occured while executing doInBackground() in VideosSearchActivityTask Confirmed
13 He* Health 1M-5M NullPointerException Unable to start the activity of SetWeightGoalSuccessActivity Fixed
14 PT* Game 50M-100M ActivityNotFoundException Unable to find the explicit activity class MraidActivity Confirmed
15 T* Utility Tool 10M-50M ClassCastException android.text.SpannableString cannot be cast to java.lang.String Confirmed

6 RELATEDWORK
Model-based GUI testing.Model-based testing (MBT) [23, 54] is
a widely used testing approach. One important task is to extract a
suitable, abstract (behavior) model for the system under test [17].
However, in GUI testing, manually constructing models is time-
consuming and error-prone [36, 57]. Extensive research has created
several tools to automate this process. Android-GUITAR [19] uses
event flow graph [42], which only consists of events. This graph
usually generates many infeasible event sequences, and reduces
the effectiveness of MBT. AndroidRipper [1], MobiGUITAR [2] (an
extension of the former), ORBIT [67] and AMOLA [7] use state
machines to represent app models. However, they achieve simple UI
exploration (e.g., depth/breadth-first), and thus their performance
is limited. SwiftHand [15] uses machine learning techniques to
dynamically learn models for apps, but its aim is to improve the ex-
ploration strategy and reduce app restarts. MonkeyLab [61] records
the execution traces from app users to mine statistical language
models, but aims to generate replayable event sequences.

Another important activity in MBT is to generate tests from
models. Traditional approaches employ graph traversal algorithms
to generate tests, and then fulfill various coverage metrics [43].
Amalfitano et al. [2] randomly generate tests from models to sat-
isfy pairwise coverage for apps. Nguyen et al. [48] combine model-
based testing and combinatorial testing, and enhance the tests with
domain input specifications. Brooks et al. [10] use probabilistic
FSM models populated by software usage profiles [51, 62] to do
regression testing of desktop applications. Hierons et al. [34] use an
extended stochastic model to describe non-deterministic systems,
and generate tests from the mutated models to check the confor-
mance between system specifications and their implementations.
Compared with these approaches, Stoat uses stochastic FSM mod-
els populated by execution profiles to generate tests. The tests are
iteratively optimized to detect app bugs with the feedback from test
execution. Stoat further enhances MBT by injecting system-level
events, which has not been considered by previous work.

Other approaches also exist for app testing. Symbolic execu-
tion [4, 36, 46] exhaustively explores program paths to test apps.
Dynodroid [39] enforces random testing enhanced with UI explo-
ration heuristics to achieve GUI testing. AppDoctor [35] randomly
invokes event handlers in the code, rather than faithfully emit-
ting events on the app screen, to test the robustness of apps. Evo-
Droid [40] uses evolutionary algorithms to generate high coverage

GUI tests. TrimDroid [45] optimizes combinatorial testing for app
testing with smaller but effective test suites.
MCMC sampling-driven testing. Markov Chain Monte Carlo
(MCMC) sampling techniques have been used for several software
testing problems [13, 37, 68–70]. Zhou et al. [68] propose a Markov
Chain Monte Carlo Random Testing (MCMCRT) approach to en-
hance traditional random testing. It utilizes the Bayes approach to
parametric models for testing, and uses the prior knowledge and
previous testing results to estimate parameters. This technique can
also improve the performance of random testing [70] and prioritize
test case selection [69]. Chen and Su [13] introduce mucert, an
approach that adopts MCMC sampling to optimize test certificates
for testing certificate validation in SSL/TLS implementations. The
test suite is generated and mutated to achieve higher coverage
and reveal more discrepancies. MCMC sampling is also used to
guide fuzz testing of JVMs’ startup process [12], where mutators
are selected on the basis of prior knowledge. Le et al. [37] adapt
MCMC sampling to generate diverse program variants for finding
deep compiler bugs. Compared with these MCMC-based testing
approaches, Stoat advocates the novel, effective idea of mutating
the app model so that tests derived from the model are diverse and
lead to high code coverage.

7 CONCLUSION
We have introduced Stoat, a novel, automated model-based testing
approach to improving GUI testing. Stoat leverages the behavior
models of apps to iteratively refine test generation toward high
coverage as well as diverse event sequences. Our evaluation results
on large sets of apps show that Stoat is more effective than state-
of-the-art techniques. We believe that Stoat’s high-level approach
is general and can be fruitfully applied in other testing domains.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback. Ting Su is partially supported by NSFC Grants 61572197
and 61632005, Geguang Pu byMOSTNKTSP Project 2015BAG19B02
and STCSM Project No.16DZ1100600, Yuting Chen by NSFC Grant
61572312, Ke Wu by Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (ZF1213), and Zhen-
dong Su by the United States NSF Grants 1319187, 1528133, and
1618158, and a Google Faculty Research Award. This work is also
partially supported by the NTU Research Grant M4061759.020.

254

Guided, Stochastic Model-Based GUI Testing of Android Apps ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing
of Android applications. In IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. 258–261.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53–59. DOI:http://dx.doi.org/10.1109/
MS.2014.55

[3] Saswat Anand. 2017. ELLA. (2017). Retrieved 2017-2-18 from https://github.com/
saswatanand/ella

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-
tomated concolic testing of smartphone apps. In 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012. 59.

[5] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
2003. An Introduction to MCMC for Machine Learning. Machine Learning 50, 1
(2003), 5–43.

[6] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013. 641–660.

[7] Young Min Baek and Doo-Hwan Bae. 2016. Automated model-based Android
GUI testing using multi-level GUI comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016. 238–249.

[8] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2012.
Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis with
Soot. In ACM Sigplan International Workshop on the State Of The Art in Java
Program Analysis.

[9] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2015. Scalable race detection
for Android applications. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 332–
348.

[10] Penelope A. Brooks and Atif M. Memon. 2007. Automated GUI testing guided by
usage profiles. In 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia, USA. 333–342.

[11] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets. In 36th
International Conference on Software Engineering, ICSE. 175–186.

[12] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-Directed Differential Testing of JVM Implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[13] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015. 793–804.

[14] Siddhartha Chib and Edward Greenberg. 1995. Understanding the Metropolis-
Hastings Algorithm. (1995).

[15] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI testing
of Android apps with minimal restart and approximate learning. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. 623–640.

[16] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet? (E). In 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015. 429–440. DOI:http://dx.doi.org/10.1109/
ASE.2015.89

[17] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. 1999. Model-based Testing in Practice. In Proceedings of the 21st
International Conference on Software Engineering (ICSE ’99). ACM, New York, NY,
USA, 285–294.

[18] Guilherme de Cleva Farto and Andre Takeshi Endo. 2015. Evaluating the model-
based testing approach in the context of mobile applications. Electronic notes in
Theoretical computer science 314 (2015), 3–21.

[19] Android GUITAR Developers. 2017. Android GUITAR. (2017). Retrieved 2017-2-
18 from http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android_
GUITAR

[20] Bites Developers. 2017. Bites. (2017). Retrieved 2017-2-18 from https://code.
google.com/archive/p/bites-android/

[21] Mileage Developers. 2017. Mileage. (2017). Retrieved 2017-2-18 from https:
//github.com/evancharlton/android-mileage

[22] Soot Developers. 2017. Soot. (2017). Retrieved 2017-2-18 from https://github.
com/Sable/soot

[23] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travas-
sos. 2007. A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical assessment of
software engineering languages and technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007. ACM, 31–36.

[24] Ting Su et al. 2017. Stoat. (2017). Retrieved 2017-2-18 from https://tingsu.github.
io/files/stoat.html

[25] W.R. Gilks, S. Richardson, and D. Spiegelhalter. 1995.Markov ChainMonte Carlo in
Practice. Taylor & Francis. http://books.google.com/books?id=TRXrMWY_i2IC

[26] Google. 2017. Android Logcat. (2017). Retrieved 2017-2-18 from https://developer.
android.com/studio/command-line/logcat.html

[27] Google. 2017. Android UI Automator. (2017). Retrieved 2017-2-18 from http:
//developer.android.com/tools/help/uiautomator/index.html

[28] Google. 2017. Monkey. (2017). Retrieved 2017-2-18 from http://developer.android.
com/tools/help/monkey.html

[29] AppBrain Group. 2017. AppBrain. (2017). Retrieved 2017-2-18 from http://www.
appbrain.com/stats/

[30] F-droid Group. 2017. F-Droid. (2017). Retrieved 2017-2-18 from https://f-droid.
org/

[31] Vignir Gudmundsson, Mikael Lindvall, Luca Aceto, Johann Bergthorsson, and
Dharmalingam Ganesan. 2016. Model-based Testing of Mobile Systems - An
Empirical Study on QuizUp Android App. In Proceedings First Workshop on Pre-
and Post-Deployment Verification Techniques, PrePost@IFM 2016, Reykjavík, Iceland,
4th June 2016. 16–30.

[32] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-automation for Large-scale Dynamic Analysis
of Mobile Apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’14). ACM, New York, NY,
USA, 204–217. DOI:http://dx.doi.org/10.1145/2594368.2594390

[33] Xiaocong He. 2017. Python wrapper of Android UIAutomator test tool. (2017).
Retrieved 2017-2-18 from https://github.com/xiaocong/uiautomator

[34] Robert M. Hierons and Mercedes G. Merayo. 2009. Mutation testing from proba-
bilistic and stochastic finite state machines. Journal of Systems and Software 82,
11 (2009), 1804–1818.

[35] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively
detecting mobile app bugs with AppDoctor. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014. 18:1–18:15.

[36] Casper Svenning Jensen, Mukul R. Prasad, and Anders Møller. 2013. Automated
testing with targeted event sequence generation. In International Symposium on
Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013.
67–77.

[37] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015. 386–399.

[38] Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques, and
Lingfei Zeng. 2017. Automatic Text Input Generation for Mobile Testing. In
Proceedings of the 39th International Conference on Software Engineering (ICSE
’17). IEEE Press, Piscataway, NJ, USA, 643–653.

[39] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. 224–234.

[40] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: segmented
evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 599–609.

255

http://dx.doi.org/10.1109/MS.2014.55
http://dx.doi.org/10.1109/MS.2014.55
https://github.com/saswatanand/ella
https://github.com/saswatanand/ella
http://dx.doi.org/10.1109/ASE.2015.89
http://dx.doi.org/10.1109/ASE.2015.89
http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android_GUITAR
http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android_GUITAR
https://code.google.com/archive/p/bites-android/
https://code.google.com/archive/p/bites-android/
https://github.com/evancharlton/android-mileage
https://github.com/evancharlton/android-mileage
https://github.com/Sable/soot
https://github.com/Sable/soot
https://tingsu.github.io/files/stoat.html
https://tingsu.github.io/files/stoat.html
http://books.google.com/books?id=TRXrMWY_i2IC
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/command-line/logcat.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.appbrain.com/stats/
http://www.appbrain.com/stats/
https://f-droid.org/
https://f-droid.org/
http://dx.doi.org/10.1145/2594368.2594390
https://github.com/xiaocong/uiautomator

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su

[41] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July
18-20, 2016. 94–105.

[42] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In 10th Working
Conference on Reverse Engineering, WCRE 2003, Victoria, Canada, November 13-16,
2003. 260–269.

[43] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. 2001. Coverage criteria
for GUI testing. In Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, September 10-14, 2001. 256–267.

[44] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, Annamalai Narayanan,
Yang Liu, Jie Zhang, and Tieming Chen. 2016. Mystique: Evolving Android
Malware for Auditing Anti-Malware Tools. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security (ASIA CCS ’16). ACM,
New York, NY, USA, 365–376.

[45] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing Combinatorics in GUI Testing of Android Applications. In Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 559–570.

[46] Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Esfahani, and Riyadh
Mahmood. 2012. Testing Android apps through symbolic execution. ACM
SIGSOFT Software Engineering Notes 37, 6 (2012), 1–5.

[47] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA, April
11-15, 2016. 33–44.

[48] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. 2012. Combining model-
based and combinatorial testing for effective test case generation. In International
Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, USA,
July 15-20, 2012. 100–110.

[49] Borislav Nikolik. 2006. Test diversity. Information & Software Technology 48, 11
(2006), 1083–1094.

[50] Michael Pradel, Parker Schuh, George C. Necula, and Koushik Sen. 2014. Event-
Break: analyzing the responsiveness of user interfaces through performance-
guided test generation. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 33–47.

[51] Stacy J. Prowell. 2005. Using Markov Chain Usage Models to Test Complex
Systems. In 38th Hawaii International Conference on System Sciences (HICSS-38
2005), CD-ROM / Abstracts Proceedings, 3-6 January 2005, Big Island, HI, USA.

[52] Vlad Roubtsov. 2017. EMMA. (2017). Retrieved 2017-2-18 from http://emma.
sourceforge.net/

[53] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimiza-
tion. In Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013. 305–316.

[54] Muhammad Shafique and Yvan Labiche. 2010. A systematic review of model
based testing tool support. Carleton University, Canada, Tech. Rep. Technical
Report SCE-10-04 (2010).

[55] Ting Su. 2016. FSMdroid: Guided GUI Testing of Android Apps. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016 - Companion Volume. 689–691.

[56] Ting Su, KeWu,Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. 2017. A Survey on Data-Flow Testing. ACM Comput. Surv. 50, 1, Article 5
(March 2017), 35 pages.

[57] Tommi Takala, Mika Katara, and Julian Harty. 2011. Experiences of System-Level
Model-Based GUI Testing of an Android Application. In Fourth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2011, Berlin,
Germany, March 21-25, 2011. 377–386.

[58] Androguard Team. 2017. Androguard. (2017). Retrieved 2017-2-18 from https:
//github.com/androguard/androguard

[59] TextEdit Developers. 2017. TextEdit. (2017). Retrieved 2017-2-18 from https:
//github.com/paulmach/Text-Edit-for-Android

[60] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying
Android Applications Using Java PathFinder. SIGSOFT Softw. Eng. Notes 37, 6
(Nov. 2012), 1–5.

[61] Mario Linares Vásquez, MartinWhite, Carlos Bernal-Cárdenas, Kevin Moran, and
Denys Poshyvanyk. 2015. Mining Android App Usages for Generating Actionable
GUI-Based Execution Scenarios. In 12th IEEE/ACMWorking Conference on Mining
Software Repositories, MSR 2015, Florence, Italy, May 16-17, 2015. 111–122.

[62] James A. Whittaker and Michael G. Thomason. 1994. A Markov Chain Model for
Statistical Software Testing. IEEE Trans. Software Eng. 20, 10 (1994), 812–824.

[63] Wikipedia. 2017. Cosine similarity. (2017). Retrieved 2017-2-18 from https:
//en.wikipedia.org/wiki/Cosine_similarity

[64] Wikipedia. 2017. Gibbs Sampling. (2017). Retrieved 2017-2-18 from https:
//en.wikipedia.org/wiki/Gibbs_sampling

[65] Wikipedia. 2017. Metropolis-Hastings algorithm. (2017). Retrieved 2017-2-18
from https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm

[66] Qing Xie and Atif M. Memon. 2006. Studying the Characteristics of a "Good" GUI
Test Suite. In 17th International Symposium on Software Reliability Engineering
(ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina, USA. 159–168. DOI:
http://dx.doi.org/10.1109/ISSRE.2006.45

[67] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications. In Fundamental Approaches
to Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings. 250–265.

[68] Bo Zhou, Hiroyuki Okamura, and Tadashi Dohi. 2010. Markov ChainMonte Carlo
Random Testing. In Advances in Computer Science and Information Technology,
AST/UCMA/ISA/ACN 2010 Conferences, Miyazaki, Japan, June 23-25, 2010. Joint
Proceedings. 447–456.

[69] Bo Zhou, Hiroyuki Okamura, and Tadashi Dohi. 2012. Application of Markov
Chain Monte Carlo Random Testing to Test Case Prioritization in Regression
Testing. IEICE Transactions 95-D, 9 (2012), 2219–2226.

[70] Bo Zhou, Hiroyuki Okamura, and Tadashi Dohi. 2013. Enhancing Performance
of Random Testing through Markov Chain Monte Carlo Methods. IEEE Trans.
Computers 62, 1 (2013), 186–192.

[71] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv. 29, 4 (Dec. 1997), 366–427.

256

http://emma.sourceforge.net/
http://emma.sourceforge.net/
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/paulmach/Text-Edit-for-Android
https://github.com/paulmach/Text-Edit-for-Android
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
http://dx.doi.org/10.1109/ISSRE.2006.45

	Abstract
	1 Introduction
	2 Approach Overview
	3 Stochastic Model-based Testing
	3.1 Stochastic Model
	3.2 Model Construction

	4 Guided Stochastic Model Mutation
	4.1 Gibbs Sampling
	4.2 Objective Function
	4.3 Gibbs Sampling Guided Model Mutation
	4.4 System-level Events

	5 Evaluation
	5.1 Tool Implementation
	5.2 Evaluation Setup
	5.3 Study 1: Model Construction
	5.4 Study 2: Testing Effectiveness
	5.5 Bug Analysis
	5.6 Study 3: Usability on Real-world Apps
	5.7 Limitations and Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

