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Abstract. Backdoor has offered a new attack vector to degrade or even
subvert deep learning systems and thus has been extensively studied in
the past few years. In reality, however, it is not as robust as expected
and oftentimes fails due to many factors, such as data transformations
on backdoor triggers and defensive measures of the target model. Differ-
ent backdoor algorithms vary from resilience to these factors. To evaluate
the robustness of backdoor attacks, we conduct a quantitative analysis of
backdoor failures and further provide an interpretable way to unveil why
these transformations can counteract backdoors. First, we build a uni-
form evaluation framework in which five backdoor algorithms and three
types of transformations are implemented. We randomly select a number
of samples from each test dataset, and then these samples are poisoned
by triggers. These distorted variants of samples are passed to the trojan
models after various data transformations. We measure the differences
of predicated results between input samples as influences of transforma-
tions for backdoor attacks. Moreover, we present a simple approach to
interpret the caused degradation. The results as well as conclusions in
this study shed light on the difficulties of backdoor attacks in the real
world, and can facilitate the future research on robust backdoor attacks.

Keywords: Deep learning · Backdoor attack · Robustness · Transfor-
mation · Interpretability.

1 Introduction

Deep learning has gained tremendous success in a variety of fields, such as im-
age classification, speech recognition, natural language processing, and gaming.
Moreover, its superior performance motivates the application in the security-
critical areas including autonomous driving, face payment, and identity verifi-
cation. However, deep learning has proved to be vulnerable and poses a great
risk to its users. Since Szegedy et al. [33] first proposed the existence of ad-
versarial examples in deep learning, researchers and practitioners have fleetly
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payed attention to issues of security and privacy in deep learning. It reveals that
deep learning is suffering from adversarial attacks, model inversion, model ex-
traction [11] and backdoor attacks [12]. Compared to other attacks, backdoor is
more like an intentional attack initialized by a miscreant while the others are
more like a special vulnerability of deep learning models. In a typical backdoor
attack, training data is poisoned with well-crafted samples [8, 22]. If an innocent
developer trains a classification model with poisoned data, a backdoor is conse-
quently implanted and the attacker can make the model output a chosen result
as expected.

Backdoor attacks can incur severe damages and even threaten people’s safety.
If one face recognition model is implanted with a backdoor, Bob with a sticker on
his face may deceive the model and buy a lunch on Alice’s bill [3]. Even worse, an
object detection system in a self-driving car may misclassify one STOP sign as a
30km/h speed limit due to an unconscious backdoor inside. This error can cause a
serious traffic accident. To counteract this attack, prior studies have developed a
number of techniques to detect trigger samples [7, 5], reverse engineer backdoors
in models [21, 36, 13], and harden models blindly [20]. However, it is unclear
and still unexplored whether backdoor attacks are effective as claimed in prior
studies and what difficulties will be confronted to trigger a backdoor in reality.

There are many uncertainties in triggering a backdoor of deep neural net-
works so that the implanted trojan may not respond to the attacker. First, these
influencing factors can come from the physical world [38]. Taking face recogni-
tion as an example, a facial image is photographed by an on-site camera and it
is heavily impacted by the shooting distance, angle, focus position and illumina-
tion conditions. Every time the face recognition system is used in the physical
world, the images are likely varying. Second, there are uncertainties influencing
the success rate of backdoor attacks in the digital world. The image may go
through pre-processing and transformations like cropping, scaling, and rotation.
These transformations are attributed to either the defensive measures employed
by the target model, or an adaption of the size of the model input. Given that,
it is intriguing and important to explore why backdoor attacks fail and evaluate
the robustness of backdoor attacks.

In this study, we conduct a quantitative analysis of failures of backdoor at-
tacks in deep neural networks. To be more specific, we aim to transform model
inputs and determine the influence to the prediction results. To this end, we first
build a uniform evaluation framework that integrates two vanilla deep neural
networks– LeNet [14] and ResNet-34 [9]. Five backdoor algorithms are imple-
mented and we obtain 8 trojaned models as the test subject. We then employ
three transformations on both input samples and backdoor triggers, and cre-
ate a number of test samples as input. The robustness of backdoor attacks are
quantified by attack success rate, through which we shed light on the different
resilience to transformations. Last, we leverage the interpretability algorithm
SmoothGrad [31] to explain how models make a right or wrong prediction under
transformations.

Contributions. To sum up, we make the following contributions.
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– A uniform evaluation framework. It implements five backdoor algorithms
and contains 8 trojaned models. We develop three types of transformations
for both input samples and backdoor triggers that can simulate the uncer-
tainties in the physical and digital worlds.

– A quantitative analysis of backdoor failures. We have created 165,000 samples
in total as model input and measured the influence of data transformations
on backdoor attack success rate.

– Explanation on backdoor robustness. Through the interpretability analysis
on backdoor robustness, we unveil how the poisoned samples are recognized
by models and their prediction limits in the context of data transformations.

2 Related Work

Backdoor attacks in deep learning. Gu et al. [8] introduce a backdoor attack
called BadNets for the first time, BadNets pollutes the training set, and achieves
nearly 90% attack success rate in the traffic sign recognition. In order to enhance
the concealment of injected backdoor, Chen et al. [3] mix backdoor triggers with
a benign image. However, the attack success rate is proved to be related to the
blending ratio. Besides, Li et al. [16] aim to regularize the disturbance trigger
using p-norm so that the noise can be generated in a small range. Except for
changing the trigger, Bagdasaryan et al. [2] claim that the loss computation was
poisoned in the model-training code. On the one hand, Liu et al. [23] polluted the
samples of reflected trigger image under common natural reflection phenomenon.
Cheng et al. [4] define the trigger as style conversion, and train a generative
adversarial network (GAN) model to generate polluted samples. Li et al. [18]
plug the trigger into the image invisibly by image steganography. The above
methods change the target labels of samples, so the attack can still be detected
by checking the labels and samples. Therefore, a new attack strategy called
clean label backdoor attack is proposed. Turner et al. [35] study the backdoor
attack of clean labels at the beginning. They apply adversarial interference as a
trigger to benign samples in the target category. Zhao et al. [42] extend this idea
by using general perturbations in video classification. Saha et al. [29] minimize
the distance of the target class in the feature space and inject the poisoned
information into the image. Moreover, Quiring et al. [27] hide the trigger by
zooming attack [39]. Apart from the deliberately designed triggers, some of the
studies also use semantic shapes as backdoor triggers. For example, Bagdasaryan
et al. [2] first explore this kind of backdoor attack named the semantic backdoor
attack. Lin et al. [19] design hidden backdoor which can be activated by the
combination of certain objects. In addition, some non-poisoning attacks have
also been researched. For instance, Dumford et al. [6] explore non-poisoning
backdoor attack and focus on modifying the parameters of models. Besides,
Rakin et al. [28] consider to insert a target trojan during the training process.
Tang et al. [34] introduce malicious backdoor module as trigger. As for the
defense of backdoor attacks, some solutions have been proposed like unlearning
[10].
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Robustness evaluation of backdoor attacks. The current research about
the robustness of backdoor is basically sketchy. Weng et al. [37] analyze the re-
lationship between the robustness of backdoor attacks and adversarial attacks.
Xue et al. [40] demonstrate that the attack with a static trigger is vulnerable, and
much less effective in the physical world. Furthermore, Li et al. [17] summarize
that when triggers in testing images are not consistent with another trigger used
for training, the attack may be unstable. Therefore, The transformation-based-
pre-processing (e.g., flipping and scaling) on the testing image before prediction
will sharply decrease attack success rate. Pasquini et al. [26] transform the trig-
gers with typical image processing operators of varying strength, and discuss the
results of the backdoored DNN. The response of geometric and color transfor-
mations suggests that the change of the trigger geometry and partial occlusion
of trigger can lower the success rate. Differently, our study considers a variety
of backdoor algorithms and employs three types of transformations to measure
their robustness. Moreover, we try to explore how backdoor models view trigger
samples and the transformed.

3 Preliminary & Overview

3.1 Backdoor Attacks

Deep learning can be interpreted as a process to learn an abstraction of massive
amounts of data via multi-layer neural networks. For the supervised learning, it
acquires a well-labeled data set {X ,Y} and computes an optimal parameter θ
for the neural network F , that is, Fθ : X → Y. The model Fθ is correct under a
certain probability where Fθ(X ) = Y∗ and the model accuracy can be computed
with the portion of different elements between Y and Y∗. Prior studies [8, 3] show
that the training data can be maliciously crafted to introduce a backdoor in a
neural network, i.e., backdoor attack. As such, the trojaned model can output
the attacker-chosen label via the trigger. Without loss of generality, we define
backdoor attacks in neural networks as follows.

Definition 1 (Backdoor). Given a trojaned neural network Fθ− , there exists
a set of samples X that will be classified as a fixed class (e.g., yt) if they are
decorated with a specific trigger t. That is, Fθ−(x⊕ t) = yt.

To evaluate the attack success rate (ASR) of backdoor attacks, an attacker
can randomly choose a set of clean samples X that are decorated with the
fixed trigger t, and determine how many percent of samples are classified as yt.
More rigorously, the clean samples X should not be of the factual class yt, i.e.,
∀x ∈ X , Fθ(x) 6= yt. For ease of understanding, all the notations in this paper
have been summarized in Table 1.

3.2 Approach Overview

In this study, we aim to evaluate the robustness of mainstream backdoor at-
tack methods in the scenario of the physical world. The samples that serve as
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Table 1: Notations in this paper

Notation Description

X × Y the labeled data with input space X and label space Y
X × Y∗ the factual labels Y∗ for a given data X
θ model parameters
Fθ a neural network with the parameter θ

Fθ− a backdoored neural network with the parameter θ−

X b the poisoned data for training

Yb the model’s predictions for the poisoned data
x⊕ t a data point with trigger t attached
yt an attacker-chosen class for backdoor attacks
S the rendering space for a trigger

poisoned normal

Sample
Transformation

Backdoor  
Implanting

distorted triggers

Trojaned model

Robustness Evaluation 
& Interpretability

Fig. 1: System overview

intentional triggers may be affected by the realistic environment that can un-
dermine the efficacy of trojaned models. Fig. 1 shows the overview of this study.
In particular, we first create a poisoned data set with diverse backdoor triggers
and insert a backdoor into the trained model with five backdoor methods (i.e.,
backdoor implanting). All the poisoned samples undergo transformations such
as scaling and rotation (i.e., sample transformation). The distorted samples are
then passed to the trojaned model. Last, we evaluate the robustness of trojaned
models in front of distorted samples and provide an interpretability analysis (i.e.,
robustness evaluation & interpretability).

4 Methodology

In this section, we present the details for the methodology.

4.1 Backdoor Implanting

In a conventional process of backdoor implanting, the attacker needs to first
design a trigger, determine the optimization objective, and train a model with
poisoned and non-poisoned samples.
Trigger Design. A trigger is the pattern used to poison training data and
activate backdoors in a neural network [12]. In a backdoor attack, the original
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image I can be represented as I : {〈x, y, z〉}, where x and y are the x-coordinate
and y-coordinate, respectively, and z is the RGB value for the pixel at 〈x, y〉.
The poisoned image can be created by performing a pixel-wise computation
with the trigger t in the same coordinate, i.e., I ⊕ t. There are several intriguing
properties of a trigger, such as size, color, texture, naturalness, detectability, etc.
A line of work has developed different types of triggers to inject a backdoor.
In this paper, we select five representative trigger designs in terms of these
properties. In particular, the selected triggers are from the following studies.

(a) Square (b) Smile (c) UAT (d) DFST (e) Reflection

Fig. 2: Examples of backdoor trigger

1. BadNets. The trigger is a monochromatic square usually put at the corner of
the original image as shown in Fig. 2 (a) [8]. As the background color of MNIST
images is black, we render the trigger as a white square as {〈x, y, z〉|〈x, y〉 ∈
S ∧ z = 255}, where S is the rendering space of the trigger. Therefore, the
poisoned image can be obtained by overlaying the trigger on image I.
2. Blended Injection in [3]. As shown in Fig. 2(b), it blends an image with
the trigger in the following manner.

zi = λzi + (1− λ)zt, where 〈xi, yi〉 ∈ S ∧ λ ∈ [0, 1] (1)

Noted that λ is a parameter to control the blending ratio, and the trigger
does not exist when λ = 1 and it is a BadNets trigger if λ = 0.
3. Deep Feature Space Trojaning (DFST). The trigger is not a fixed pat-
tern in DFST, but generated dynamically depending on the original image. In
particular, the attacker first trains a CycleGAN [4] that incorporates styles (e.g.,
sunset). The CycleGAN can then generate a stylized image as poisonous samples.
4. Refool. It proposes a new type of triggers using the natural reflection phe-
nomenon [23] as indicated in Fig. 2 (d). Reflection is very common in reality
when an object has a smooth surface. Assume the reflection image is xR, the
poisoned data xb can be computed as

xb = x+ xr ⊗ λ (2)

where λ is a convolution kernel that controls the reflection effect. Three effects
are: reflection from the same-depth layer, out-of-focus layer and ghost effect.
5. Universal Adversarial Trigger (UAT) [42]. Similar to DFST, UAT is an
optimized trigger based on the training data. It is initialized with random values
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for a fixed-size area, i.e., t : {〈x, y, z〉|〈x, y〉 ∈ S ∧ z ∈ RN}. The poisoned sample
can be represented as xb = x⊕ t and trigger t can be optimized through:

t = arg min
t
Σxi∈X −

1

l
Σl
j=1yj log(hj(xi ⊕ t)) (3)

where l is the number of output labels, yj here is the probability of being
class j, and h(·) is the softmax output of the model. In this manner, the attacker
can generate a trigger that is universally workable for the training data.
Backdoor Training. Generally, a backdoor is installed by (re-)training the
model on a poisoned data set with X b. It can be formulated as the following
optimization objective.

θ− = arg min
θ−

Σx∈XL(Fθ−(x), y) (4)

where L is the loss function such as Cross Entropy [24]. To balance the predica-
tion accuracy for normal samples and attack success rate for backdoor samples,
we choose 10% training samples randomly and put the trigger on them.

4.2 Sample Transformation

Backdoor attacks may not perform as effectively as claimed in prior studies due
to data transformation in reality [26]. As aforementioned, there are many uncer-
tainties from one sample with trigger to the target model [41, 43]. These uncer-
tainties can significantly affect attack success rate of backdoor attacks, i.e., one
distorted trigger sample may fail to set the model on fire. Therefore, transform-
ing input data can better illustrate how robust deep neural networks are when
triggering a backdoor. In this study, we consider the following transformations.
Translation. In geometry, translation is to move a subject with a certain dis-
tance without rotating it. It often happens before an image is passed to the
model. This transformation is eligible for both trigger and image. For instance,
the focal point of one photographed image shifts by a small distance. The digital
image has different sizes with the dimensions of model input and so it has to be
cropped that can incur a translation of backdoor trigger in the range of image.
To evaluate the stability of backdoor triggering, we translate the trigger in the
image canvas by a certain distance (e.g., r) and create a number of patched
images where the triggers’ center is scattered on the ring of a circle with radius
r. We also translate the entire image to simulate the process of image transfor-
mation in model defense [1]. There will be blanks in transformed images and
we fill the blanks with the shift-out parts. To determine the largest translation
distance, we employ a trial-and-error method to translate the unpatched image
gradually unless it is wrongly classified by the model.
Scaling. One image and its trigger can be scaled outward or inward to imitate
a varying focal length. We are then able to determine how backdoor attacks are
affected by scaling. As for the image, we can cut out an area of same sizes as the
original when the image is scaled out. There also exists the blank problem when
shrinking images, and we fill the blanks with black color (i.e., (0, 0, 0) in RGB
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images and 0 in grey-scale images). We call the function “PIL.Image.resize()”
and use nearest neighbor interpolation (i.e., PIL.Image.NEAREST) to scale the
image. Similar to translation, we have to determine what the largest scaling ratio
is in the trial-and-error method.
Rotation. Image rotation is an image processing routine, commonly used in
data augmentation [30] during model training. Moreover, the images captured
from the physical world oftentimes suffer such transformations considering the
photographer is not at the right front of the photo subject (i.e., with a vary-
ing angle). As a consequence, the image has a certain angle horizontally. In
this study, we intend to explore whether a rotated image or trigger can affect
the performance of backdoor attacks. Given one image, we invoke the function
“PIL.Image.rotate()” in Python library PIL to rotate the target image with a
certain angle. Similar to scaling, we also fill the blanks due to rotation with
black color. It is noted that some triggers are rotational symmetry. For example,
the white square in Fig. 2(a) is 4-fold rotational symmetry so we only rotate the
trigger by less than 90◦ with a stride of 15◦ in our experiment.

4.3 Robustness Evaluation & Interpretability Analysis

Given the poisoned data X b of n dimensions, the model produces n-dimensional
Yb. The attack success rate (ASR1) can be computed as: |{y|y ∈ Yb∧y = yt}|/n.

We can perform transformations, i.e., T (·), on X b and obtain data X b̃. Sim-

ilarly, the output labels for X b̃ are represented as Y b̃. Then, the ASR2 is:

|{y|y ∈ Y b̃ ∧ y = yt}|/n. As a result, the attack success rate of backdoors is
dropped by ASR1 - ASR2 because of transformation T (·). To gain a finer influ-
ence function of transformations on ASR, we parameterize these transformations
such as rotating triggers by 15◦ for one checkpoint. The details for the parame-
terized transformations are described in each experiment at Section 5.

With the decorated samples and their distorted ones, we intend to explain
why it sometimes fails to trigger a backdoor in an interpretable way. In particular,
we employ SmoothGrad to visualize the important regions in an image that are
responsible for the decision. In this way, we attempt to explain how a trigger
image has a label flip, i.e., from yt to ¬yt, after transformations, and whether
the important regions stay unaltered with the unchanged output label.

5 Evaluation

5.1 Experimental Setup

In the experiment, we take two datasets in account: MNIST [15] and GT-
SRB [25]. More specifically, MNIST is an image dataset of handwritten digits
from 0 to 9, and contains 60,000 samples. Each data point in the set is a greyscale
image of size 28×28. GTSRB is an image dataset of 43 kinds of German traffic
signs, and contains about 40,000 samples. Each data point is a RGB image of
difference size, and it is resized to size 96×96 before fed to the network. We train
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Table 2: Performance of the original and five backdoor models on the two
datasets. “ACC. (%)” denotes the accuracy of the model’s main task, “ASR
(%)” is the attack success rate of backdoor methods in our framework.

Model Pattern
MNIST GTSRB

ACC. (%) ASR (%) ACC. (%) ASR (%)

*Original* NA 99.13 - 97.05 -
BadNets Square 99.17 99.95 97.32 95.79

Blend Smile 99.02 99.78 96.58 96.63
UAT UAT 97.01 90.06 94.30 82.60
DFST Cezanne - - 95.27 98.30

Reflection Apple - - 94.01 93.91

a LeNet [14] model on dataset MNIST and a ResNet-34 [9] model on dataset
GTSRB since these two network structures achieve state-of-the-art performance
on these datasets. As shown in Table 2, the accuracies of vanilla models are
99.13% and 97.05%, respectively.

For these two benign models, we apply five mainstream backdoor algorithms,
i.e., BadNets, Blend, DFST, Refool and UAT, to introduce a backdoor. The Bad-
Nets method is the first method to propose the concept of deep learning back-
door attacks, which is also the main attack idea based on data pollution-based
backdoor attacks. It mainly prints trigger patterns such as small white squares
into the sample. Since the trigger by BadNets is obvious and easy-to-detected,
the subsequent backdoor attacks are dedicated to increase the concealment of
trigger. In particular, the Blend method mixes the trigger and the sample in
a certain ratio. When the mixing ratio is small, the image will be close to the
original sample. The UAT method is to generate the general disturbance trigger
in the original image that is different from other methods. It does not need to
maliciously change the label of the poisoned sample when the backdoor is im-
planted. The Refool method is inspired by the natural reflection phenomena and
implant a backdoor with a reflected image. The DFST method basically trains
a style transfer model with CycleGAN, with which it transfers the style of the
current image to another, for example in a painting style of cezanne.

Because DFST and Reflection backdor attacks are limited in RGB images,
we only implement BadNets, Blend and UAT attacks on dataset MNIST and
set their poisoning rates to 10% for all. For GTSRB dataset, we implement all
5 backdoor attacks and set poisoning rates of DFST and Reflection to 20%.

Experiment Parameters. To preserve as many characteristics of triggers as
possible during transformation, we make a proper design for the position and
size of original triggers. Specifically, we use a 5×5 white bottom-right square as
BadNets triggers. For UAT attack, we use a 8×8 perturbation square on MNIST,
and a 28×28 perturbation block on GTSRB. To avoid exceeding the boundary
of an image, we leave 3 bottom-right pixels for BadNets and UAT triggers on
MNIST and BadNets triggers on GTSRB, but 6 pixels for UAT triggers on
GTSRB. We use a smile meme as Blend trigger and stylize the images with the
painting style of cezanne in attack DFST. Since a cezanne-styled trigger does
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Fig. 3: Success rate of backdoor attacks under trigger transformations

not have a specific shape, we do not consider trigger transformations for this
attack. For all experiments, we choose the first class as the target label yt (e.g.,
0 in MNIST and speed 20 limit sign in GTSRB).

5.2 Backdoor Robustness under Trigger Transformation

In this experiment, we employ translation, scaling and rotation on triggers to
evaluate the robustness of backdoor. For each transformation, we select a suitable
transformation range to inspect backdoor attack changes from a small sample set.
Fig. 3 shows the results for applying these three transformations. The horizontal
axis of each plot represents specific transformation parameters, and the vertical
axis is backdoor attack success rate.

For trigger translation, we measure ASRs when the trigger is moved to a
circle with a radius of 1, 2, 3 pixels, respectively. It is observed that as the
translation distance increases, the attack success rate of all backdoor attacks
decreases in Fig. 3a and 3d. However, the decline of the attack success rate varies
from attack methods. BadNets have the fastest attenuation and this is partly
because BadNets is the simplest method which overlays triggers to a certain area
of samples. The features remembered by the backdoor model are the simplest
and most obvious. The ASR of simple features will be dropped drastically when
the trigger moves a small distance. In addition, it may also be attributed to the
overlap ratio between the implanted trigger and the original trigger. It is easier
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to make overlap ratio smaller within a tiny amount of movement as the 5×5
square trigger is relatively small.

For trigger scaling, we amplify the trigger by 0.8, 1, or 1.2 times. It can be
seen from Fig. 3b and 3e that when the trigger is reduced, the success rate of
the backdoor attack is greatly reduced. At the same time, although the trigger
is enlarged and deviated from the benchmark (i.e. the original trigger size), the
ASR is slightly affected. This result indicates that the trigger feature is hard to
be recognized by backdoored models after being compressed, and the details of
the trigger are not lost after being zoomed in.

For trigger rotation, we rotate the trigger clockwise with the center of the
original trigger and the rotation angle is from 0◦ to 90◦ with an interval of 15◦.
It can be seen from Fig. 3c and 4f that the success rate of backdoor attacks has
decreased by varying degrees. For BadNets, since its trigger is a square that is
symmetric, its ASR curve is symmetric as well. When it reaches 45◦, the overlap
between the transformed trigger and the original is the smallest, so that its ASR
is the lowest. For UAT, the decline is most obvious, because the trigger of UAT is
generated by the general perturbation value of an area in the lower right corner
so that the model can maximize the output probability of the target label. When
the UAT trigger is rotated, the value of the pixel is more likely to be different
after the nearest neighbor algorithm, leading to the original neurons related to
the target label cannot be activated as expected.

5.3 Backdoor Robustness under Image Transformation

Similarly, we perform translation, scaling, and rotation transformations on the
backdoor samples with triggers. Then we measure the impact of these transfor-
mations on backdoor attack success rate. For each transformation, we also select
an appropriate transformation range, and generate 1000 samples under different
transformation configurations to test the robustness of the five backdoor attack
methods. In order to maintain uniformity with trigger transformation and ease
the comparison of the results, we have adopted the same transformation settings
for these three attacks. However, the transformation may lead a sample to be an
invalid one, i.e., a wrong predication is not due to the backdoor, but the heavily
distorted image. So we also perform these transformations on clean samples and
test the prediction accuracy for them as a benchmark. Fig. 3 reports the results
of applying these three transformations. The horizontal axis of each plot repre-
sents the converted value of backdoor samples or clean samples, and the vertical
axis represents the success rate of backdoor attacks or main attack accuracy,
respectively. The black dotted line represents the accuracy of clean samples.

For image translation as Fig. 4a and 4d, we get a similar result of a decrease
in attack success rate with that of trigger translation. As the translation radius
increases, the attack success rates of all backdoor attacks decrease. However,
with the exception of BadNets, other attack methods have a smaller decline in
image translation than trigger translation because the BadNets implant a simple,
small and obvious backdoor trigger. In other methods like blend, the implanted
backdoor can occupy a large area in the image, which is different from BadNets.
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(b) Image scaling results on
MNIST

(c) Image rotation results
on MNIST
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(d) Image translation on
GTSRB
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(e) Image scaling results on
GTSRB
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(f) Image rotation results
on GTSRB

Fig. 4: Success rate of backdoor attacks under image transformations

It is implanted in a certain connection with the original image (i.e. the blend
ratio). It implied that the translation of images does not completely destroy the
connection between the trigger and the sample. We can observe that Reflection
and DFST have strong robustness to small translation, and it is probably because
these two backdoor methods have more abstract connections and larger trigger
areas than other attacks.

For image scaling, the results we get are different from trigger scaling. What-
ever the image is zoomed in or out, it will destroy the original attack success rate.
The reason is more likely to be that the position of the trigger is also changed
while the image is zoomed. Therefore, under the double change of the size and
position of the trigger, the success rate of the backdoor attack has been greatly
damaged. BadNets is still the most susceptible attack due to the simplicity of
its triggers, and Reflection and DFST are the most robust attacks due to their
abstract connections. As for UAT, it is surprisingly found that its robustness on
different datasets has big difference.

For image rotation, the same result is slightly different from trigger rotation.
The robustness of the BadNets method drops very clearly when the image is
rotated, while the effects of other methods are similar. As with image scaling,
image rotation will change the position of BadNets triggers. Different from the
above two transformations, the image rotation plot shows that the accuracy
of the main task declines sharply when clean samples are rotated, while some
backdoor attacks such as Reflection and DFST maintain a smaller success rate
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Table 3: Error rates of each transformation on GTSRB-BadNets. “Configura-
tion” denotes the configuration used in the corresponding transformation, “Error
Rate (%)” is the error predicted rate in test samples.

Transformation
Trigger Image

Configuration Error Rate (%) Configuration Error Rate (%)

Translation 3 0.00 3 1.07
Scaling 0.8 0.00 0.8 26.27

Rotation 45◦ 0.00 45◦ 89.54

reduction than the baseline. This phenomenon shows that the backdoor task and
the main task in the deep learning model have different robustness.

5.4 Explanatory Experiment

In order to understand why a backdoor sample fails, we employ a model in-
tepretability method, i.e., SmoothGrad [31] to illustrate how the trojaned model
recognize the sample. We select the model trained on the GTSRB dataset and at-
tacked by BadNets as the illustrative example, since the model has relatively low
robustness when facing different transformations. The first question we intend to
answer is: when the backdoor sample is transformed, whether its predicted label
is turned back to the true label. So we calculate the error rate for each transfor-
mation, where an error is counted if the predicted label of a transformed sample
is neither a target backdoor label nor a true label, while the corresponding clean
sample and the original backdoor sample are well predicted. As shown in Ta-
ble 3, trigger transformations do not affect the predicted outputs while image
transformations can damage the prediction results significantly. The error rates
of image transformations are basically consistent with the accuracy reduction of
the main task in Fig. 4.

Next, we analyze which parts of the samples contribute more to the pre-
dicted label by applying a model interpretability method called SmoothGrad.
SmoothGrad is a gradient-based explanation method, and is suitable for various
network models. It not only retains the advantages of Integrated Gradients [32]
which handles the locality problem of gradient information, but also reduces the
gradient noise. To verify the validity of SmoothGrad, we manually analyze 50
random well-predicted backdoor samples and check whether they can display the
square trigger correctly. The result shows that 98% of samples can be explained
correctly, proving its effectiveness.

Fig. 5 reports a set of samples under different transformations, and the area
enclosed by a red box is the backdoor trigger. Fig. 5a and 5b are the inter-
pretability result for the clean sample and the original backdoor sample. The
other figures are for the transformed samples that are predicted as the true
label. It is observed from Fig. 5b that the trigger is well recognized by Smooth-
Grad, and plays a determinant role in making prediction. However, when the
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(a) Interpretability on clean sample (b) Interpretability on BadNets sample

(c) Interpretability on trig-
ger translation sample

(d) Interpretability on trig-
ger scaling sample

(e) Interpretability on trig-
ger rotation sample

(f) Interpretability on im-
age translation sample

(g) Interpretability on im-
age scaling sample

(h) Interpretability on im-
age rotation sample

Fig. 5: Interpretability results by SmoothGrad on BadNets-GTSRB

sample is transformed, the importance of the trigger on model decision almost
disappears and the center area of the sample largely contributes to the predicted
label. It means that the transformation can seriously affect the decision-making
part of backdoor samples.

6 Discussion

Threats to validity. Our experiment results may be affected by some opera-
tions and settings. For example, due to the limitations of image resolution, when
a small pixel trigger (5×5) rotates, the pixel area it occupies is very different
from the actual rotation. For example, when a 3×3-pixel square is rotated with
15 degrees, the angle is rounded to zero in such resolution so the rotated image
looks exactly the same as the original image. On the second place, the accuracy
of the deep learning model will fluctuate in a small range according to the train-
ing setting during training, so the experimental results will have small changes.
It may affect the absolute value of the model accuracy but will not change the
fact of ASR reduction when applying transformations.
Insights from experiments. From the above experiment results, we summa-
rize main observations and insights as follows:
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– The backdoor attack is not as robust as imagined, and it is even difficult
to trigger in the physical world. Whether it is for triggers or images, for
most of the transformations, the accuracy of backdoor attacks will gradually
reduce as they deviate from the baseline. Sometimes even a small change,
such as shrinking the image, may make the backdoor ineffective. Therefore,
a defender can perform these transformations on unknown inputs to defend
potential backdoor attacks.

– Although these transformations will reduce the efficiency of backdoor attacks,
we can also see that different backdoor attack methods exhibit different ro-
bustness characteristics in the face of transformations. For example, the Re-
flection and DFST methods basically maintain certain level of accuracy in the
face of these transformations, and are more robust than other backdoor meth-
ods. Therefore, with sufficient resources (e.g., one can train a style cycleGAN
model), the attacker can give priority to these attack methods.

– The design of backdoor trigger affects the robustness of backdoor methods
significantly. For example, a symmetrical trigger can be resistant to transfor-
mations like rotation to a certain extent. Moreover, the more abstract connec-
tion between the trigger and the original sample is, the more robust the attack
methods are. When designing the trigger, one can consider how to construct
an abstract feature as a trigger to obtain a more robust method.

Future work. In this study, we only consider two representative datasets, where
MNIST is a must-do dataset for testing a classification model and GTSRB con-
tains images captured from the reality and is larger than another popular dataset
CIFAR. In future, we intend to test on larger datasets, like ImageNet, to ob-
serve the performance of these attack methods under these transformations. At
present, a trigger pattern is used for an attack method, while the design of
the trigger may affect the results to a certain extent. So in the future, we can
consider evaluating different triggers under the same attack method (e.g. sym-
metrical triggers and asymmetrical triggers). Our work explores the robustness
of backdoor methods and models mainly from the transformation perspective,
and future study can evaluate more properties of backdoor methods or models
from other perspectives. Finally, a more robust backdoor method under these
transformations is a direction of future investigation.

7 Conclusion

In this paper, we conduct a quantitative analysis of backdoor failures in neu-
ral networks, which are caused by data transformation. To this end, we build
a uniform framework including five mainstream backdoor algorithms, and then
train 8 trojaned models for evaluation. Three types of data transformations are
performed on both images and triggers through which we obtain 165,000 evalu-
ators. The experiment results quantify the influences on these transformations
on the success rate of backdoor attacks. Last, we visualize how trojaned models
recognize the images and their transformed variants.
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