
Contextual Weisfeiler-Lehman Graph Kernel For
Malware Detection

Annamalai Narayanan, Guozhu Meng, Liu Yang, Jinliang Liu and Lihui Chen
Nanyang Technological University, Singapore.

annamala002@e.ntu.edu.sg, {gzmeng, yangliu}@ntu.edu.sg, liuj0081@e.ntu.edu.sg, elhchen@ntu.edu.sg

Abstract—In this paper, we propose a novel graph kernel
specifically to address a challenging problem in the field of
cyber-security, namely, malware detection. Previous research has
revealed the following: (1) Graph representations of programs are
ideally suited for malware detection as they are robust against
several attacks, (2) Besides capturing topological neighbourhoods
(i.e., structural information) from these graphs it is important
to capture the context under which the neighbourhoods are
reachable to accurately detect malicious neighbourhoods.

We observe that state-of-the-art graph kernels, such as
Weisfeiler-Lehman kernel (WLK) capture the structural in-
formation well but fail to capture contextual information. To
address this, we develop the Contextual Weisfeiler-Lehman kernel
(CWLK) which is capable of capturing both these types of
information. We show that for the malware detection problem,
CWLK is more expressive and hence more accurate than WLK
while maintaining comparable efficiency. Through our large-
scale experiments with more than 50,000 real-world Android
apps, we demonstrate that CWLK outperforms two state-of-
the-art graph kernels (including WLK) and three malware
detection techniques by more than 5.27% and 4.87% F-measure,
respectively, while maintaining high efficiency. This high accuracy
and efficiency make CWLK suitable for large-scale real-world
malware detection.

keywords — graph kernels, malware detection, program
analysis

I. INTRODUCTION

Malware detection has evolved as one of the challenging
problems in the field of cyber-security as the attackers contin-
uously enhance the sophistication of malware to evade novel
detection techniques. Malware for various platforms such as
desktop and mobile devices is growing at an alarming rate. For
instance, Kaspersky reports [1] detecting 4 million malware
infections in 2015 which is a 216% increase over 2014. This
volume and growth rate clearly highlights an imperative need
for automated malware detection solutions.
To perform automated malware detection, security analysts
resort to program analysis and machine learning (ML) tech-
niques. Typically, this process involves extracting semantic
features from suitable representations of programs (e.g., as-
sembly code, call graphs) and detecting malicious code or
behavior patterns using ML classifiers [2]–[7].
A major reason for such tremendous growth rate in malware
is the production of malware variants. Typically, the attackers
produce large number of variants of the same malware by re-
sorting to techniques such as variable renaming and junk code
insertion [3, 4, 7, 8]. These variants perform same malicious
functionality, with apparently different syntax, thus evading
syntax-based detectors. However, higher level semantic repre-
sentations such as call graphs, control- and data-flow graphs,

control-, data- and program-dependency graphs mostly stay
similar even when the code is considerably altered [3, 5, 7, 8].
In this work, we use a common term, Program Representation
Graph (PRG) to refer to any of these aforementioned graphs.
As PRGs are resilient against variants, many works in the past
have used them to perform malware detection. In essence, such
works cast malware detection as a graph classification problem
and apply existing graph mining and classification techniques
[8]. Some methods such as [2, 3, 5] note that ML classifiers are
readily applicable on data represented as vectors and attempt
to encode PRGs as feature vectors. Typically, these techniques
face two challenges:

• (C1) Expressiveness. PRGs are complex and expressive
data structures that characterize topological relationships
among program entities. Representing them as vectors is a
non-trivial task. In many cases vectorial representations of
PRGs fail to capture all the vital information. For instance,
AppContext [2], a well-known Android malware detection
approach represents apps as PRGs and ends up capturing
features from individual nodes without their topological
neighbourhood information. With such loss of expressive-
ness, attacks that span across multiple PRG nodes could
not be effectively detected.

• (C2) Efficiency. The scale of malware detection problem
is such that we have millions of samples already and thou-
sands streaming in every day. Many classic graph mining
based approaches (e.g., [8]) are NP hard and have severe
scalability issues, making them impractical for real-world
malware detection [3, 9].

Graph Kernels. One of the increasingly popular approaches
in ML for graph-structured data is the use of graph kernels.
Recently, efficient and expressive graph kernels such as [11]–
[14] have been proposed and widely adopted in many ap-
plication areas (e.g, bio- and chemo-informatics [15]–[18]).
Some of them support explicit feature vector representations
of graphs (e.g, [11]–[13]). Thus both the aforementioned
challenges C1 and C2 are effectively addressed by these
graph kernels. Therefore, it just suffices to use a graph kernel
together with a kernelized ML classifier (e.g., SVM) and we
have a scalable, effective and ready-to-use malware detector.
Recently, three approaches [3], [6] and [9], have successfully
demonstrated using these general purpose graph kernels for
malware detection.
Research Gap. However, a major problem in using these
general purpose graph kernels on PRGs is that, they are not
designed to take domain-specific observations into account.

4701978-1-5090-0620-5/16/$31.00 c©2016 IEEE

1: public void leak_info_to_url (String target_url, String info_to_leak) {
2: URL url = new URL(target_url);
3: connection = (HttpURLConnection)url.openConnection();
4: DataOutputStream wr = new DataOutputStream (connection.getOutputStream ());
5: wr.writeBytes (info_to_leak);wr.flush ();wr.close ();connection.dicconnect();
6: }
7: public void leak_location (String target_url) {
8: String loc = location.getLatitude() + " : " + location.getLongitude();
9: leak_info_to_url (target_url, loc)}

(a) Simplified source code
(b) Data Dependency Graph

getLatitude

getLongitude

writeBytes

(c) Geinimi – Contextual Data
Dependency Graph

getLatitude
Context: {user-unaware}

getLongitude
Context: {user-unaware}

writeBytes
Context: {user-unaware}

(d) Yahoo Weather – Contextual
Data Dependency Graph

getLatitude
Context: {user-aware}

getLongitude
Context: {user-aware}

writeBytes
Context: {user-aware }

Fig. 1: Location information being leaked in Geinimi (malware) and Yahoo Weather (benign) apps. (a) code snippet corresponding to
leaking location information in both the apps. (b) DDG corresponding to the location leak. (c) Geinimi’s DDG illustrating that it leaks
information without the user’s knowledge. (d) Yahoo Weather’s DDG illustrating that it leaks information with the user’s knowledge.

For instance, recent research on malware analysis has revealed
that besides capturing neighbourhood (i.e., structural) informa-
tion from PRGs it is important to capture the context under
which the neighbourhoods are reachable to accurately detect
malicious neighbourhoods [2, 7] (explained in detail in §II).
Many existing graph kernels such as [11] and [12] can capture
and compare structural information from PRGs effectively.
However, they are not designed to capture the reachability
context, as it is a strong domain-specific requirement and
hence fail to do so. To address this, we develop a novel graph
kernel which is capable of capturing both the aforementioned
types of information.
For similar domain-specific reasons, researchers from other
fields such as computer vision [18], bio- and chemo-
informatics [15]–[17] have developed a number of kernels
that specifically suit their applications. Despite graphs being
natural representations of programs and amenable for vari-
ous activities, the program analysis research community has
not devoted significant attention to development of domain-
specific graph kernels. We take the first step towards this, by
developing a kernel on PRGs which specifically suits our task
of malware detection.
Our approach. To improve the accuracy of malware detection
process, we propose a method to enrich the feature space
of a graph kernel that inherently captures structural infor-
mation with contextual information. We apply this feature-
enrichment idea on a state-of-the-art graph kernel, namely,
Weisfeiler-Lehman kernel (WLK) [11] to obtain the Contex-
tual Weisfeiler-Lehman kernel (CWLK). Specifically, CWLK
associates to each sub-structure feature of WLK a piece of
information about the context under which the sub-structure
is reachable in the course of execution of the program. A sub-
structure appearing in two different PRGs will match only
if it is reachable under the same context in both PRGs. We
show that for the malware detection problem, CWLK is more
expressive and hence more accurate than WLK and other state-
of-the-art kernels while maintaining comparable efficiency.
Experiments. Through our large-scale experiments with more
than 50,000 Android apps, we demonstrate that CWLK outper-
forms two state-of-the-art graph kernels (including WLK) and
three malware detection techniques by more than 5.27% and
4.87% F-measure, respectively, while maintaining high effi-
ciency. This, in essence shows the significance of incorporating
the contextual information along with structural information in
the graph kernel while performing malware detection.
Contributions. The paper makes the following contributions:
(1) We develop a graph kernel that captures both structural
and contextual information from PRGs to perform accurate

and scalable malware detection (§IV). To the best of our
knowledge, this is the first graph kernel specifically addressing
a problem from the field of program analysis.
(2) Through large-scale experiments and comparative analysis,
we show that the proposed kernel outperforms two state-of-
the-art graph kernels and three malware detection solutions in
terms of accuracy, while maintaining high efficiency (§V).
(3) We make an efficient implementation of the proposed
kernel (along with the dataset information) publicly available1.

II. BACKGROUND & MOTIVATION

In this section, we motivate the design of our kernel by
describing why considering just the structural information
from PRGs is insufficient to determine the maliciousness of a
sample and how supplementing it with contextual information
helps to increase detection accuracy. To this end we use a
real-world Android malware2 from the Geinimi family which
steals users’ private information. We contrast its behavior with
that of a well-known benign app, Yahoo Weather.
Geinimi’s execution. The app is launched through a back-
ground event such as receiving a SMS or call. Once
launched, it reads the user’s personal information such as
geographic location and contacts and leaks the same to a
remote server. The (simplified) malicious code portion per-
taining to the location information leak is shown in Fig.
1 (a). The method leak location reads the geographic loca-
tion through getLatitude and getLongitude Appli-
cation Programming Interfaces (APIs). Subsequently, it calls
leak info to url method to leak the location details (through
DataOutputStream.writeBytes) to a specific server.
The Data Dependency Graph (DDG) corresponding to the
code snippet is shown in Fig. 1 (b). The nodes in DDG are
labeled with the sensitive APIs that they invoke.
Yahoo Weather’s execution. On the other hand, Yahoo
Weather could be launched only by user’s interaction with
the device (e.g., by clicking the app’s icon on the dash
board). The app then reads the user’s location and sends the
same to its weather server to retrieve location-specific weather
predictions. Hence, DDG portions of Yahoo Weather is same
as that of Geinimi.
Contextual information. From the explanations above, it is
clear that both the apps leak the same information in the
same fashion. However, what makes Geinimi malicious is
the fact that its leak happens without the user’s consent. In
other words, unlike Yahoo Weather, Geinimi leaks private
information through an event which is not triggered by user’s

1https://sites.google.com/site/cwlkernel
2SHA256:05620032f3a2abd5ebea482b5e5d5b8ff5faa8115019736013d87f442032b6bc

4702 2016 International Joint Conference on Neural Networks (IJCNN)

interaction. We refer to this as a leak happening in user-
unaware context. On the same lines, we refer to Yahoo
Weather’s leak as happening in user-aware context.
As explained in [7] and [2], in the case of Android apps,
one could determine whether a PRG node is reachable under
user-aware or user-unaware context by examining its entry
point nodes. Following this procedure we add the context as
an attribute to every DDG node. This context annotated DDG
of Geinimi and Yahoo Weather are shown in Fig. 1 (c) and
(d), respectively.
Requirements for effective detection. From the aforemen-
tioned example the two key requirements that makes a mal-
ware detection process effective can be identified:
(R1) Capturing structural information. Since malicious be-
haviors often span across multiple nodes in PRGs, just con-
sidering individual nodes (and their attributes) in isolation
is not enough. Capturing the structural (i.e., neighborhood)
information from PRGs is of paramount importance.
(R2) Capturing contextual information. Considering just the
structural information without the context is not enough to
determine whether a sensitive behavior is triggered with or
without user’s knowledge. For instance, if structural infor-
mation alone is considered, the features of both Geinimi and
Yahoo Weather apps become identical, thus making the latter a
false positive. Hence, it is important for the detection process
to capture the contextual information as well to make the
detection process more accurate.
Many existing graph kernels could address the first require-
ment well. However, the second requirement which is more
domain-specific makes the problem particularly challenging.
To the best of our knowledge, none of the existing graph
kernels support capturing this reachability context information
along with structural information. Hence, this gives us a clear
motivation to develop a new kernel that specifically addresses
our two-fold requirement.

III. DEFINITIONS AND NOTATIONS

The formal definitions and notations that will be used through-
out the paper are presented in this section.
Definition 1 (Program Representation Graph). PRG =
(N,E, λ, ξ) is a directed graph where N is a set of nodes
and each node n ∈ N denotes program entity such as a
function or instruction. E ⊆ (N × N) is a set of edges
and each edge e(n1, n2) ∈ E denotes either control- or data-
flow or dependency from n1 to n2. λ is the set of labels that
characterize the (security-sensitive) operations of a node and
� : N → λ, is a labeling function which assigns a label to
each node. ξ is a set of events that denote the context of a
node and C : N → ξ, is a function which assigns the context
to each node.
Definition 2 (Context). The context of a node n ∈ N in the
PRG of a program P is a set of attributes ξ(n) that govern
the reachability of n in the course of execution of P .
Examples of contexts. In the case of Windows executables,
the guard conditions that govern the execution of a node could
be considered as its context [8]. Unlike Windows (and other
desktop OS) binaries, Android and iOS mobile apps typically
have multiple entry points [2, 7]. Hence, in the case of such

mobile apps, besides guard conditions, the categories of entry
points through which a node is reachable could also be con-
sidered as its context. Similar platform-specific constraints and
observations could be considered while defining the contexts
for executables of other platforms.

IV. CONTEXTUAL WEISFEILER-LEHMAN GRAPH KERNEL

In this section, we begin by explaining how the regular
WLK can be applied to perform malware detection using
PRGs and how it falls short. Subsequently, we introduce
our CWLK and discuss how it addresses the shortcomings
of WLK. Finally, we prove CWLK’s semi-definitiveness and
analyze its time complexity.

A. Regular Weisfeiler-Lehman Graph Kernel
WLK computes the similarities between graphs based on

the 1-dimensional WL test of graph isomorphism [11].
WL test of isomorphism. Suppose we are to determine
whether a given a pair of graphs G and G′ are isomorphic. The
WL test of isomorphism works by augmenting the node labels
by the sorted set of labels of neighboring nodes. This process
is referred to as label-enrichment and new labels are referred
as neighborhood labels. Thus, in each iteration i of the WL
algorithm, for each node n ∈ N , we get a new neighborhood
label, λi(n) that encompass the ith degree neighborhood
around n. λi(n) could be optionally compressed using a hash
function f : Σ∗ → Σ such that f(λi(n)) = f(λi(n

′)),
iff λi(n) = λi(n

′). To test graph isomorphism, the re-
labeling process is repeated until the neighborhood label sets
of G and G′ differ, or the number of iterations reaches a
specific threshold. Therefore, one iteration of WL relabeling
is equivalent to a function r((N,E, λi)) = (N,E, λi+1) that
transforms all graphs in the same manner.
Definition 3 (WL sequence). Define the WL graph at height
i of the graph G = (N,E, λ) as the graph Gi = (V,E, λi).
The sequence of graphs

G0,G1, ...,Gh = (V,E, λ0), (V,E, λ1), ..., (V,E, λh) (1)

is called the WL sequence up to height h of G, where G0 = G
(i.e., λ0 = λ) is the original graph and G1 = r(G0) is the graph
resulting from the first relabeling, and so on.
Definition 4 (WL kernel). Given a valid kernel k(., .) and the
WL sequence of graph of a pair of graphs G and G′, the WL
graph kernel with h iterations is defined as

k
(h)
WL(G,G′) = k(G0,G

′
0) + ...+ k(Gh,G

′
h) (2)

where h is the number of WL iterations and G0,G1, ...,Gh and
G ′
0,G

′
1, ...,G

′
h are the WL sequences of G and G′, respectively.

h is referred as height of the kernel.
Intuitively, WLK counts the common neighborhood labels in

two graphs. Hence we have k
(h)
WL(G,G′) = |(λi(n), λi(n

′))|,
iff f(λi(n)) = f(λi(n

′)) for i ∈ {1, ..., h}, n ∈ N,n′ ∈ N ′,
where f is injective and the sets {f(λi(n))|n ∈ N ∪N ′} and
{f(λj(n))|n ∈ N ∪N ′} are disjoint for all i �= j.
Example & WLK’s shortcoming. We now apply WLK
on the real-world examples discussed in §II to see if it
distinguishes malicious and benign neighborhoods clearly,
facilitating accurate detection. For the ease of illustration,

2016 International Joint Conference on Neural Networks (IJCNN) 4703

Algorithm 1 CWLK - Contextual re-labeling

Input:
G = G0 = (N,E, λ0, ξ) — PRG with set of nodes (N), set of edges
(E) and set of node labels (λ0) and context for each node (ξ)
h — number of iterations
Output:
{G0,G1, ...,Gh} - contextual WL sequence of height h

1: procedure CONTEXTUAL RE-LABEL(G, h)
2: for i = 0 to h do
3: for all n ∈ N do
4: σi(n) ← ∅
5: if i = 0 then
6: for c ∈ ξ(n) do
7: σi(n) ← σi(n) ∪ c⊕ λ0(n)
8: end for
9: else

10: N (n) ← {m | (n,m) ∈ E}
11: Mi(n) ← {λi−1(m) | m ∈ N (n)}
12: λi(n) ← λi−1(n)⊕ sort(Mi(n))
13: for c ∈ ξ(n) do
14: σi(n) ← σi(n) ∪ c⊕ λi(n)
15: end for
16: end if
17: σi(n) ← join(σi(n))
18: γi(n) ← f(σi(n))
19: end for
20: Gi ← (N,E, γi)
21: end for
22: return {G0,G1, ...,Gh}
23: end procedure

the label compression step is avoided. Applying WLK on
the DDG for both Geinimi and Yahoo Weather apps, shown
in Fig. 1 (b), for the node getLatitude, for heights
h = 0, 1, we get the neighborhood labels getLatitude and
getLatitude,writeBytes, respectively. Clearly, WLK
captures the neighborhood around the node getLatitude,
incrementally in every iteration of h. In fact, neighbor-
hood label for h = 1 captures that another sensitive node,
writeBytes lies in the neighborhood of getLatitude,
which highlights a possible privacy leak. However, WLK does
not capture whether the neighborhood involved in this leak is
reached in user-aware or unaware context. This is precisely
what we address through our CWLK.

B. Contextual Weisfeiler-Lehman graph Kernel
The goal of CWLK is to capture not only neighborhoods

around the node, but also to include the contexts in which each
of the neighborhoods is reachable in the PRG. To this end, we
modify the re-labeling step of WLK so as to accommodate
the context of every neighborhood. We refer to this process as
contextual-relabeling and the sequence of graphs thus obtained
as contextual WL sequence.
Contextual re-labeling. Specifically, CWLK performs one
additional step in the re-labeling process which is to attach
the contexts of every node to its neighborhood label in every
iteration. This in effect, indicates the contexts under which a
particular neighborhood is reachable. The label thus obtained
is referred to as contextual neighborhood label. The contextual
relabeling process is presented in detail in Algorithm 1.
The inputs to the algorithm are PRG, G and the degree of
neighbourhoods to be considered for re-labeling, h. The output

is the sequence of contextual WL graphs, {G0,G1, ...,Gh}=
{(N,E, γ0), (N,E, γ1), ..., (N,E, γh)}, where γ1, ..., γh are
constructed using the contextual relabeling procedure.
For the initial iteration i = 0, no neighborhood information
needs to be considered. Hence the contextual neighborhood
label γ0(n) for all nodes n ∈ N is obtained by justing prefix-
ing the contexts to the original node labels and compressing
the same (lines 6-8,17-18). For i>0, the following procedure
is used for contextual re-labeling. Firstly, for a node n ∈ N ,
all of its neighboring nodes are obtained and stored in N (n)
(line 10). For each node m ∈ N (n) the neighborhood label
up to degree i − 1 is obtained and stored in multiset Mi(n)
(line 11). λi−1(n), neighborhood label of n till degree i−1
is concatenated to the sorted value of Mi(n) to obtain the
current neighborhood label, λi(n) (line 12). Finally the current
neighborhood label is prefixed with the contexts of node n to
obtain the string σi(n) which is then compressed using the
function f to obtain the contextual neighborhood label, γi(n)
(lines 13-15,17-18).
Definition 5 (CWL kernel). Given a valid kernel k(., .) and
the CWL sequence of graph of a pair of graphs G and G′, the
contextual WL graph kernel with h iterations is defined as

k
(h)
WL(G,G′) = k(G0,G′

0) + ...+ k(Gh,G′
h) (3)

where h is the number of CWL iterations and G0,G1, ...,Gh

and G′
0,G′

1, ...,G′
h are the CWL sequences of G and G′,

respectively.
Intuitively, CWLK counts the common contextual neighbor-

hood labels in two graphs. Hence we have k
(h)
CWL(G,G′) =

|(σi(n), σi(n
′))|, iff f(σi(n)) = f(σi(n

′)) for i ∈
{1, ..., h}, n ∈ N,n′ ∈ N ′.
Example. We now apply CWLK on the apps in our ex-
ample to show how it overcomes WLK’s shortcomings.
The contextual neighborhood labels σ (without compres-
sion) of the node getLatitude in Geinimi app for
heights h = 0, 1 are, user-unaware⊕getLatitude
and user-unaware⊕getLatitude,witeBytes, re-
spectively. For the same node in Yahoo Weather the contextual
neighborhood labels are user-aware⊕getLatitude and
user-aware⊕getLatitude,witeBytes. Hence, it is
evident that the CWLK’s contextual relabeling provides a
means to clearly distinguish malicious PRG neighborhoods
from the benign ones. This is achieved by complementing the
structural information with contextual information. Therefore,
unlike WLK, CWLK based classification does not detect
Yahoo Weather as a false positive. This example clearly
establishes the suitability of CWLK for the malware detection
task.
We now prove CWLK’s positive definiteness and also analyze
its time complexity.
Theorem 1. CWLK is positive definite.
Proof. Let us define a mapping φ that counts the occurrences
of a particular contextual neighborhood label sequence σ in

G (generated in h iterations of Algorithm 1). Let φ
(h)
σ (G)

denote the number of occurrences of σ in G, and analogously

4704 2016 International Joint Conference on Neural Networks (IJCNN)

φ
(h)
σ (G′) for G′. Then,

k(h)σ (G,G′) = φ(h)
σ (G), φ(h)

σ (G′) = |{(σi(n), σi(n
′))|

σi(n) = σi(n
′), i ∈ {1, ..., h}, n ∈ N,n′ ∈ N ′}| (4)

Summing over all σ from the vocabulary Σ∗, we get

k
(h)
CWL(G,G′) =

∑

σ∈Σ∗
k(h)
σ (G,G′) =

∑

σ∈Σ∗
φ(h)
σ (G)φ(h)

σ (G′)

= |{(σi(n), σi(n
′))|σi(n) = σi(n

′), i ∈ {1, ..., h}, n ∈ N,n′ ∈ N ′}|
= |{(σi(n), σi(n

′))|f(σi(n)) = f(σi(n
′)),

i ∈ {1, ..., h}, n ∈ N,n′ ∈ N ′}| (5)

where the last equality follows from the fact that f is injective.
As f(σ) �= f(σ′) if σ �= σ′, the string σ corresponds to exactly

one contextual neighborhood label and k
(h)
CWL defines a kernel

with corresponding feature map φ
(h)
CWL, such that

φ
(h)
CWL = (φ(h)

σ (G))σ∈Σ∗ (6)

Complexity. The runtime complexity of CWLK with h itera-
tions on a graph with n nodes and e edges is O(he) (assuming
that e>n) which is same as that of WLK. More specifically,
the neighborhood label computation with sorting operations
(lines 10-12 of Algorithm 1) take O(e) time for one iteration
and the same for h iterations take O(he). The inclusion of
context (lines 6-8,13-15), does not incur additional overhead
as e>> |ξ|. Hence the final time complexity remains as O(he).
For a detailed derivation and analysis of the time complexity
of WLK, we refer the reader to [11].
Efficient computation of CWLK on K graphs. When
computing CWLK on K graphs to obtain K×K kernel matrix,
a naı̈ve approach would involve K2 comparisons, resulting a
time complexity of O(K2he). However, as mentioned in [11],
a Bag-of-Features (BoF) model based optimization could be
performed to arrive the kernel matrix in O(Khe+K2hn) time.
This optimized computation involves the following steps: (1)
A vocabulary Σ of all the contextual neighbourhood labels of
nodes across the K graphs is obtained in O(Khe) time. This
facilitates representing each of the K graphs as feature vectors
of |Σ| dimensions. (2) Subsequently, K×K kernel matrix can
be computed by multiplying these vectors in O(K2hn) time.
In summary, CWLK has the same efficiency as that of WLK
and supports explicit feature vector representations of PRGs.
Relation to other spatial contextual kernels. Two recently
proposed graph kernels [13] and [14], consider incorporating
the spatial context information to neighborhood subgraph
features. They define context of a subgraph feature as another
subgraph appearing in its vicinity. As mentioned earlier, in
our malware detection problem we refer to attributes of a
node which determine its reachability as its context. This
reachability context is different from spatial context discussed
in [13] and [14]. Hence CWLK is consummately different
from these two kernels.

TABLE I: Composition of dataset
Portion of dataset Dataset source # of samples

Malware portion DREBIN [4], Virus Share [19] 29877
Benign portion Google Play [20] 25000

TABLE II: Dataset Statistics
CG (Avg ± Std) ICFG (Avg ± Std)

of Nodes # of Edges # of Nodes # of Edges
1556 ± 998 3327 ± 1803 15323 ± 9844 22745 ± 20922

V. EVALUATION

We conducted large scale experiments involving more than
50,000 Android apps from two real-world malware datasets
to evaluate the accuracy and efficiency of CWLK. We com-
pare CWLK’s performance against that of two state-of-the-art
kernels and three Android malware detection solutions.

A. Datasets
DREBIN [4] provides a collection on 5,560 Android mal-

ware apps collected from 2010 to 2012. More recently, Virus-
share [19] released a collection of 24,317 malware apps
collected from 2010 to 2014. We combined these two datasets
and use them in our evaluation. For the benign portion of
the dataset, we collected 25,000 benign top-selling apps from
Google Play store [20] that were released around the same
time. Thus, our dataset contains a total of 54,877 apps. The
composition of our dataset is presented in Table I.
Graph Representations considered. As mentioned in §I the
proposed CWLK could be applied on any type of PRGs to per-
form malware detection. In our evaluations, we experimented
with two types of PRGs namely, call graphs (CGs) and inter-
procedural control-flow graphs (ICFGs). The nodes of a CG
represent the methods present in an app; its directed edges
represent the calling/called relations between the methods.
The nodes of an ICFG represent the individual instructions
present in those methods; its edges represent the control-flows
among those instructions. These two types of PRGs are chosen
since they capture program semantics at different levels of
granularities. The statistics on the average number of nodes
and edges of the PRGs in our dataset are presented in Table
II. Details on construction of these PRGs are presented later
in §V-B.
Training and Test sets. 60% of the samples were randomly
chosen from the datasets and used for training the classifier and
the remaining 40% samples are used to test their performances.
The classifiers’ hyper-parameters are determined on the train-
ing set using 5-fold cross-validation, whereas the test set is
only used for determining the final detection performance. We
repeat this procedure 5 times and average the results.

B. Implementation & Comparative Analysis
PRG construction & Context Identification. Both CG and
ICFG of the apps in our datasets are constructed through static
analysis using Soot [21], a well-known Android static analysis
workbench. The nodes are labeled with the security-sensitive
APIs they access and are annotated with context information.
Nodes that do not access any sensitive APIs are removed. We
use the category of entry points of each of the nodes in these
graphs as their contexts. The procedure proposed in DroidSIFT
[7] is used to identify and categorize each entry point as being
in ‘user-aware’ or ‘user-unaware’ context.
Comparison with Graph Kernels. CWLK’s accuracy and
efficiency is compared against those of WLK [11] and Neigh-
borhood Hash Graph Kernel (NHGK) [12]. Since these kernels
cannot capture context information, we use the comparative

2016 International Joint Conference on Neural Networks (IJCNN) 4705

Fig. 2: No. of features obtained for various heights of

CWLK.

analysis against them to ascertain whether including context
information significantly improves the accuracy without affect-
ing the efficiency. We implemented all these kernels in about
2,170 lines of Python code. For all the kernels, BoF model
based implementation similar to the one discussed in §IV-B is
used obtain explicit feature vector representation of samples.
Comparison with Malware Detection Solutions. Also, our
approach is compared against three light-weight state-of-the-
art ML based Android malware detection solutions, namely,
DREBIN [4], Allix et al. [5] and ADAGIO [3]. To this end, we
re-implemented DREBIN and Allix et al.’s approaches through
consultations with the authors. For ADAGIO, an open-source
implementation provided by the authors is used.
Since the malware detection accuracy of these solutions
predominantly depend on the features they use, we briefly
introduce them here. DREBIN [4] considers features such as
sensitive Android APIs, permissions and components used
by apps. Allix et al. [5] constructs the CFGs of individual
methods and represent them as signature strings which are
subsequently used as features. ADAGIO [3] constructs CGs and
uses byte-code instructions to assign labels to nodes. NHGK
[12] is used to extract CG neighborhoods as features and a
histogram-intersection (HI) kernel SVM is trained to detect
malware. Due to severe scalability issues (explained in §V-D3)
ADAGIO is ran only once on our dataset. All other techniques
are ran 5 times and the average results are reported.

C. Experimental Design
Research Questions. Through our evaluations, we seek to
address the following research questions: (1) Does including
the context information in PRGs through CWLK significantly
improve the malware detection accuracy? (2) Does capturing
context information incur significant computation overhead
to adversely affect the efficiency? (3) Does our context-based
detection approach outperform existing malware detection
solutions? Two separate experiments are designed to address
these questions.
Experiment E1. In order to evaluate the first two questions,
the following experiment is conducted: First, the CGs of
all the training set apps are constructed. Then, the WLK,
NHGK and CWLK kernels are applied on the CGs to obtain
respective kernel matrices. Subsequently, a SVM classifier is
trained with each of these kernels to detect malicious apps.
Finally, the test set apps are subjected to the aforementioned
kernel computation processes and are used to evaluate the
models. The same procedure is repeated with ICFGs.
Experiment E2. In order to address question (3), we subject
DREBIN [4], Allix et al. [5] and ADAGIO [3] solutions to

the same training and test sets. We compare them against
the best performing model that uses CWLK (obtained from
experiment E1).
Setting the parameter h: We experimented with different
kernel heights h = 0 to 5 for CWLK (see eq. (3)). The
average number of contextual neighborhood features (from
5 runs of E1) for different values of h on the two PRGs is
reported in Fig. 2. It is evident that the number of features
does not increase significantly after h = 2 on both PRGs.
This is because we have removed nodes that do not access
sensitive APIs which affects the connectivity and restricts
the neighborhood sizes. In other words, we seldom have
neighborhoods around nodes that span beyond degree 2.
Similar trend is observed in WLK and NHGK features.
Hence we restrict the height h to be 0, 1 and 2 for all three
kernels. Thus, for each kernel applied on each PRG, we have
three SVM classifiers (one for each h). Therefore we have a
total of 18 malware detection models under comparison (see
Table III for details).
Evaluation metrics. Standard evaluation metrics such as
Precision, Recall and F-measure are used to determine
the effectiveness of malware detection [5]. Efficiency is
determined in terms of training and testing durations.
Evaluation Setup. All the experiments were conducted on
Intel Xeon Hexa-core E5-2640 processor (2.50 GHz) with 32
GB RAM running Ubuntu 14.04.

D. Results and Discussions
1) Impact of context information on F-measure: We

compare the Precision, Recall and F-measure of the malware
detection process through CWLK with those of WLK and
NHGK. This is to ascertain whether incorporating the context
information in PRGs boosts the effectiveness of detection.
These results for the 18 models are presented in Table III,
from which the following inferences are drawn:
• At the outset, two general observations are made: (1) All

models perform better on ICFGs compared to CGs. This
is because, ICFG is a more fine-grained representation of
programs than CG, which enables it to capture program
semantics at a finer level and thereby boosting the detecting
accuracy. Hence, we conclude that in our experiments ICFG
is a more effective representation for malware detection.
(2) Considering larger neighborhoods helps capturing the
structural information better which in turn reflects in better
performances. This is evident as Precision, Recall and F-
measure values get better with increasing values of h for all
the three kernels. However, this observation may not hold
for large values of h, as nodes that are far apart will be
considered for neighborhood re-labeling, leading to a noisy
re-labeling process.

• It is clear that CWLK outperforms both WLK and NHGK
in terms of F-measure consistently on both CG and ICFG
representations.

• Since the only difference between WLK and CWLK is the
latter’s capability to capture the context information, evi-
dently this is the reason for CWLK’s superior performance.

• Also, CWLK achieves better Precision than WLK in all the
experiments, consistently. This indicates that CWLK suffers

4706 2016 International Joint Conference on Neural Networks (IJCNN)

TABLE III: Comparison of CWLK against state-of-the-art Graph Kernels (metrics expressed as % values) - avg. over 5 runs
PRG
Type Kernel h = 0 h = 1 h = 2

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

CG
WLK [11] 71.21 (±1.15) 80.93 (±1.78) 75.75 (±1.28) 85.00 (±1.59) 85.93 (±2.10) 85.46 (±1.39) 87.28 (±1.02) 86.15 (±0.78) 86.71 (±0.88)
NHGK [12] 63.05 (±3.11) 60.14 (±2.04) 61.56 (±2.56) 67.18 (±1.76) 69.02 (±2.01) 68.08 (±1.88) 74.17 (±1.11) 70.22 (±1.69) 72.14 (±1.88)
CWLK 77.29 (±1.75) 79.85 (±0.83) 78.54 (±0.97) 88.50 (±0.95) 87.98 (±1.41) 88.23 (±1.10) 89.19 (±0.83) 90.10 (±0.96) 89.64 (±0.94)

ICFG
WLK [11] 85.49 (±2.59) 81.66 (±3.71) 83.53 (±2.19) 90.17 (±1.92) 87.48 (±1.20) 88.8 (±1.37) 93.09 (±0.81) 88.16 (±0.77) 90.55 (±0.80)
NHGK [12] 68.68 (±4.10) 70.73 (±2.77) 69.68 (±3.20) 75.78 (±2.18) 81.01 (±2.64) 78.30 (±2.06) 78.11 (±1.07) 82.28 (±1.50) 80.14 (±1.29)
CWLK 89.74 (±2.33) 81.25 (±3.12) 85.28 (±2.59) 96.77 (±1.63) 92.08 (±1.20) 94.36 (±1.15) 97.15 (±0.28) 94.53 (±0.75) 95.82 (±0.66)

Fig. 3: Training and Testing durations for different values of

h on ICFG representation (avg. over 5 runs)

lesser false positives than WLK. This reduction in false posi-
tives is a direct result of capturing context information which
helps to precisely distinguish malicious neighborhoods in
the PRGs from the benign ones (as discussed in §IV).

• NHGK consistently fails to produce better results than WLK
and CWLK. This is because, the node labeling and hash-
ing technique adapted in NHGK causes collisions among
informative and non-informative subgraph features. Such
collisions could be avoided in WLK and CWLK through
label compression (as explained in §IV), making them more
expressive and accurate. For further details on this limitation
of NHGK, we refer the reader to the original work at
[12] (particularly Section 5 where the authors discuss this
limitation in detail).

Since CWLK uses both contextual and structural information,
it is important to analyze the contribution of each of these
types of information to its performance. Capturing only struc-
tural information is equivalent to using WLK. Hence from
rows 1 and 4 of Table III (ignoring columns for h = 0), it
is evident that structural information alone could provide a
minimum of 85.46% and an average of 87.88% F-measure
across both PRGs. Similarly, the contribution of contextual
information alone is ascertained using CWLK and setting
h = 0 to be a minimum of 78.54% and an average of
81.91% F-measure. Finally, the effect of using both types
of information is ascertained by using CWLK and setting
h > 0 to be a minimum of 88.23% and an average of
92.02% F-measure across both PRGs. This clearly conveys
that structural information is primary for performing effective
malware detection and contextual information complements it,
thereby helping to improve the accuracy. CWLK attains supe-
rior performance by capturing both these types of information.

2) Impact of context information on efficiency: We com-
pare the training and testing durations of classifiers using the
three kernels under study from experiment E1. This is to
infer whether CWLK achieves higher accuracy at the cost of
higher computation time. As discussed earlier in §IV, CWLK’s
time complexity is same as that of WLK. Hence, we expect

TABLE IV: Comparison of CWLK based malware detection

against the state-of-the-art detectors (avg. over 5 runs)
Method Precision Recall F-measure

DREBIN [4] 97.02 (±0.93) 85.60 (±1.03) 90.95 (±0.71)

Allix et al. [5] 88.24 (±0.74) 86.29 (±1.66) 87.25 (±0.54)

ADAGIO [3] 92.18 87.32 89.68

CWLK 97.15 (±0.28) 94.53 (±0.75) 95.82 (±0.66)

negligible difference in efficiency.
Experimental Setting. Due to space constraints, the training
and testing times of the worst-case experimental setting in-
volving samples with maximum number of nodes and edges
are only reported. This setting corresponds to using ICFG
representations of apps. The average training and testing
durations in this experimental setting for various values of
h over 5 runs of experiment E1 are presented in Fig. 3, from
which the following inferences are drawn.

• The training and testing durations of CWLK and WLK are
almost same for all values of h. This is due to the fact that
adding the context information which is the only additional
operation in CWLK results in negligible difference on the
total kernel computation, training and testing durations.

• The training and testing durations increase with the height
of the kernel h for all the kernels in a similar fashion. This is
mainly due to the fact that both WLK and CWLK condense
the neighborhood labels in the same way which is very
similar to that of NHGK. Also, for all these kernels, there
is a huge increase in training and testing durations when h
increases from 1 to 2 which does not reflect proportionally
in terms of F-measure. Hence, one may choose to perform
malware detection in a much scalable and reasonably accu-
rate manner by setting h = 1 (i.e., considering only degree-1
neighbors).

• It is noted that CWLK along with the other two kernels in
Fig. 3, shows high efficiency as it operates in linear time
on the density of PRGs. In particular, it is more efficient
than the classic walk-, tree- and path-based graph kernels
(discussed in [10]) and is suitable for large-scale malware
detection.

Summary. From experiment E1, we conclude that CWLK
through its virtue of capturing both structural and contextual
information, significantly improves upon the accuracy of WLK
for the malware detection task without hurting the efficiency.

3) CWLK Vs. state-of-the-art malware detectors: We now
compare CWLK based detection with the state-of-the-art An-
droid malware detection solutions to study whether contex-
tual PRG neighborhoods makes good features for malware
detection, through experiment E2. For CWLK based detection,
ICFG representation with h = 2 is used as it offers the best
performance. The Precision, Recall and F-measures of each
of these methods are reported in Table IV. The following
observations are made from the table:

2016 International Joint Conference on Neural Networks (IJCNN) 4707

Fig. 4: Comparison on Efficiency of CWLK with

state-of-the-art malware detectors (avg. over 5 runs)

• Clearly, CWLK based malware detection outperforms all the
compared solutions in terms of F-measure. In particular, our
approach outperforms the best performing technique (i.e.,
DREBIN) by 4.87% F-measure. In terms of Precision, our
approach outperforms ADAGIO and Allix et al.’s methods
and is comparable to DREBIN. In terms of Recall, ours
outperforms other methods.

• Out of the methods compared, DREBIN does not use both
structural and contextual features. ADAGIO and Allix et al.’s
approaches use structural information but not contextual
information. This reveals that capturing both these types
of information is the reason for our approach’s superior
performance, reinforcing our findings from experiment E1.

We now compare the efficiency of CWLK based detection
against that of state-of-the-art malware detectors. It is noted
that these techniques use different features and classifiers and
hence a wide variation in training and testing durations is
expected. The results of this comparison is presented in Fig.
4, from which the following observations are made:

• DREBIN being a light-weight non PRG based approach it
has significantly higher efficiency than all other methods,
including ours.

• Allix et al.’s method is similar to ours in terms of using
PRG based features. Hence our efficiency is comparable to
this method.

• ADAGIO uses NHGK and HI kernel SVM in the primal
formulation. Hence it takes a prohibitively long time for
training and testing. Our method is far more efficient than
ADAGIO.

In conclusion, our method’s efficiency is comparable to that
of other PRG based methods, far better than heavy-weight ap-
proaches and inferior to non PRG based light-weight methods.
Summary. From experiment E2, we conclude that when com-
pared to state-of-the-art malware detectors, CWLK produces
considerably higher accuracy with a practically tractable effi-
ciency, making it suitable for large-scale real-world malware
detection.

VI. CONCLUSION & FUTURE WORK

In this paper, we present CWLK, a novel graph kernel that
facilitates detecting malware using PRGs. Unlike the existing
kernels which capture only the security-sensitive neighbor-
hoods in PRGs, CWLK captures these neighborhoods along
with the context under which they are reachable. This makes
CWLK more expressive and in turn more accurate than exist-
ing kernels. Besides expressiveness, CWLK has two specific
advantages: (1) shows high efficiency, (2) supports building

explicit feature vector representations of PRGs. CWLK is
evaluated on a large-scale experiment with more than 50,000
Android apps, and is found to outperform two state-of-the-art
graph kernels and three malware detection techniques in terms
of F-measure, while maintaining comparable efficiency.
Future work. In our future work, we plan to investigate
incorporating contextual information in other sub-structure
based graph kernels such as [12] and [14] and subsequently,
study their suitability for performing malware detection.
Implementation & Dataset. We provide an efficient imple-
mentation of CWLK and information on the datasets used
within this work at: https://sites.google.com/site/cwlkernel

VII. ACKNOWLEDGMENT

We thank the authors of [4] and [5], for their suggestions that
helped us re-implement their methods.

REFERENCES

[1] Kaspersky 2014 Annual Threat Report. URL.
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-
2015 FINAL EN.pdf

[2] Yang, Wei, et al. ”Appcontext: Differentiating malicious and benign mo-
bile app behaviors using context.” Proc. of the International Conference
on Software Engineering (ICSE). 2015.

[3] Gascon, Hugo, et al. ”Structural detection of android malware using
embedded call graphs.” Proceedings of the 2013 ACM workshop on
Artificial intelligence and security. ACM, 2013.

[4] Arp, Daniel, et al. ”Drebin: Effective and explainable detection of android
malware in your pocket.” Proceedings of the Annual Symposium on
Network and Distributed System Security (NDSS). 2014.

[5] Allix, Kevin, et al. ”Empirical assessment of machine learning-based
malware detectors for Android.” Empirical Software Engineering (2014):
1-29.

[6] Sahs, Justin, and Latifur Khan. ”A machine learning approach to android
malware detection.” Intelligence and Security Informatics Conference
(EISIC), 2012 European. IEEE, 2012.

[7] Zhang, Mu, et al. ”Semantics-aware Android malware classification using
weighted contextual API dependency graphs.” Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014.

[8] Fredrikson, Matt, et al. ”Synthesizing near-optimal malware specifica-
tions from suspicious behaviors.” Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010.

[9] Anderson, Blake, et al. ”Graph-based malware detection using dynamic
analysis.” Journal in Computer Virology 7.4 (2011): 247-258.

[10] Vishwanathan, S. Vichy N., et al. ”Graph kernels.” The Journal of
Machine Learning Research 11 (2010): 1201-1242.

[11] Shervashidze, Nino, et al. ”Weisfeiler-lehman graph kernels.” The Jour-
nal of Machine Learning Research 12 (2011): 2539-2561.

[12] Hido, Shohei, and Hisashi Kashima. ”A linear-time graph kernel.” Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on. IEEE,
2009.

[13] Navarin, N., Sperduti, A., & Tesselli, R. (2015, November). Extending
local features with contextual information in graph kernels. In Neural
Information Processing (pp. 271-279). Springer International Publishing.

[14] Costa, Fabrizio, and Kurt De Grave. ”Fast neighborhood subgraph pair-
wise distance kernel.” Proceedings of the 26th International Conference
on Machine Learning. Omnipress, 2010.

[15] Borgwardt, Karsten M., et al. ”Protein function prediction via graph
kernels.” Bioinformatics 21.suppl 1 (2005): i47-i56.

[16] Fröhlich, Holger, Jörg K. Wegner, and Andreas Zell. ”Assignment
kernels for chemical compounds.” Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Conference on. Vol. 2. IEEE,
2005.

[17] Mahé, Pierre, and Jean-Philippe Vert. ”Graph kernels based on tree
patterns for molecules.” Machine learning 75.1 (2009): 3-35.

[18] Harchaoui, Zäid, and Francis Bach. ”Image classification with segmen-
tation graph kernels.” Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 2007.

[19] Virus Share malware dataset. URL. http://virusshare.com
[20] Google Play Store. URL. https://play.google.com/store
[21] Soot framework. URL. http://sable.github.io/soot

4708 2016 International Joint Conference on Neural Networks (IJCNN)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

