
Semantic Modelling of Android Malware for Effective
Malware Comprehension, Detection, and Classification

Guozhu Meng*, Yinxing Xue*, Zhengzi Xu*,
Yang Liu*, Jie Zhang*, and Annamalai Narayanan†

*School of Computer Science and Engineering, Nanyang Technological University, Singapore
†School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

ABSTRACT

Malware has posed a major threat to the Android ecosystem.
Existing malware detection tools mainly rely on signature-
or feature- based approaches, failing to provide detailed
information beyond the mere detection. In this work, we pro-
pose a precise semantic model of Android malware based on
Deterministic Symbolic Automaton (DSA) for the purpose
of malware comprehension, detection and classification. It
shows that DSA can capture the common malicious behaviors
of a malware family, as well as the malware variants. Based
on DSA, we develop an automatic analysis framework, named
SMART, which learns DSA by detecting and summarizing
semantic clones from malware families, and then extracts se-
mantic features from the learned DSA to classify malware ac-
cording to the attack patterns. We conduct the experiments
in both malware benchmark and 223,170 real-world apps.
The results show that SMART builds meaningful semantic
models and outperforms both state-of-the-art approaches
and anti-virus tools in malware detection. SMART identifies
4583 new malware in real-world apps that are missed by most
anti-virus tools. The classification step further identifies new
malware variants and unknown families.

CCS Concepts

•Security and privacy → Malware and its mitigation;
•Software and its engineering → Abstraction, model-
ing and modularity; •Theory of computation → Pro-
gram analysis;

Keywords

Android Malware Detection, Malware Modelling, Clone De-
tection, Determined Symbolic Automata

1. INTRODUCTION
Android has become a popular mobile operating system

installed on 1 billion of devices, which accounts for more
than 81.5% of all smartphones in 2014 [48]. Its prevalence
and the prosperity of Android marketplaces have made it

a hot target for attackers to upload various malware. The
total number of mobile malware samples has increased by
112%, and exceeds 5 million [52] in 2014.

Existing approaches to detecting Android malware typi-
cally rely on bytecode similarity analysis [39, 71, 72], machine
learning techniques [34, 21, 25, 67, 69] or information flow
analysis [41, 43, 45, 26, 28, 30]. Bytecode similarity analysis
usually adopts pair-wise comparison, with time complexity
O(n2) for comparing n possible malware variants. Machine
learning based approaches can be effective and efficient in
detecting malware, but only provide some predictive features
for malware without explaining the malicious behaviors in-
volved. The approaches relying on information flow analysis
are accurate, but not efficient for the large-scale detection.

The key in successful defense to malware variants or zero-
day attacks is to understand the different attack behaviors
in malware and prevent them in a proactive way. However,
none of the aforementioned approaches provides a complete
semantic explanation of attacks, the behaviors involved in
attacks, and the actions inside behaviors.
In this paper, we propose an explicit semantic model to

capture the malicious behaviors of a malware family so as to
achieve a precise comprehension. We represent the essential
elements of malicious behaviors in malware variants as De-
terministic Symbolic Automata (DSA) [59] with transitions
being system APIs (e.g., see Fig. 1). The motivation is that
one malicious behavior may occur in a variety of manners,
which can easily bypass malware detection tools based on
malware signatures or patterns. For example, there are mul-
tiple ways of sending private data from mobile devices to
a remote server, e.g., using an HttpURLConnection object to
write a stream to the server, or launching a browser to attach
the data in the URL. Although the two implementations
differ notably, they fulfil the same task. DSA can encode
alternative transitions among states, which enables capturing
malware variants of the same kind.

The ultimate goal of our study is to build a semantic model
of malware towards effective detection, classification, and
forensics. To the best of our knowledge, it is the first attempt
to propose a semantic model considering malware variants.

Based on the semantic model, we implement an automatic
malware analysis framework, named Semantic Modelling
of AndRoid aTtack (SMART), which provides three key
features—automatic semantic model construction from ex-
isting malware families, efficient malware detection and mal-
ware classification. The overall workflow of SMART is shown
in Fig. 3. First, SMART starts with identifying semantic
clones [44] among malware variants to capture the common

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’16, July 18–20, 2016, Saarbrücken, Germany
c© 2016 ACM. 978-1-4503-4390-9/16/07...$15.00

http://dx.doi.org/10.1145/2931037.2931043

306

<TelephonyManager>

 getDeviceId()

<HttpCliet>

 execute()
<SmsMessage>

 createFromPdu

DroidKungFu CruseWin

<SmsManager>

 sendTextMessage()

DSA1 DSA1
DSA1 DSA2 DSA2

SmsReplicator Mal. Family:

DSA:

OBA:

Privacy Privacy Privacy Privilege Financial Attack:

<HttpClient>

 execute()
<SmsMessage>

 createFromPdu

Semantic Model of Android Malware

Figure 1: The hierarchy of the semantic model

malicious behaviors. We propose a bytecode clone detection
method (§ 5.1) to effectively identify similar malicious code
in the form of bytecode clones. To ensure the scalability and
eliminate the noise of third party libraries, SMART filters
out commonly-known libraries according to [24]. For each
clone set, we introduce an efficient bytecode differencing al-
gorithm to build a DSA by comparing n clone instances at
one time with the complexity O(n) (§ 5.2). From DSA, low
level actions are extracted (§ 5.3). Finally, a semantic model
in Fig. 1 is stored into our DSA database. DSA is able to
cover most of the attack, but not for all. The applicability
and generality of the DSA model is discussed in § 8.
Once the semantic models are constructed, we extract

malicious features from DSA and perform malware detec-
tion via machine learning techniques (§ 6.1). Then, for each
suspicious app, SMART performs a static analysis to check
whether malicious behaviors from our DSA database is con-
tained in the app via a DSA inclusion check (§ 6.2). If DSA
inclusion succeeds, we can confirm the maliciousness of the
app and malware families they belong to. Otherwise, we
identify the actions that are contained in the app for the sake
of understanding its behaviors. The DSA-based semantic
model facilitates finding new malware variants, new fam-
ilies or even new attacks. The machine learning and the
static analysis complement each other to achieve both good
performance and high accuracy. In summary, we make the
following contributions:

• We propose a hierarchical semantic model of Android mal-
ware based on DSA, which links malware family, malicious
behaviors and fine-grained actions. To the best of our
knowledge, this is the first work in this direction.

• We propose an effective method to extract the common
malicious behaviors as DSA from malware variants of an
Android malware family.

• We combine machine learning and static analysis to detect
and classify malware. The first phase quickly identifies
suspicious apps, and the second phase uses DSA inclusion
to further confirm and classify the suspicious apps. Hence
we can achieve both scalability and accuracy.

• We test SMART on 5560 known malware and 223,170 real-
world apps. The results show that SMART outperforms
many anti-virus (AV) tools and academic approaches, with
a precision of 86.7% for malware detection. For wild
prediction, it detects 4583 new malware variants.

2. RELATED WORK
There are substantial number of related work on android

malware analysis and also a comprehensive survey [55]. Here
we list some most relevant work due to space limitation.
Bytecode similarity analysis. As malicious repackaged
apps usually share the common basic functions and features,
the idea of DroidMOSS [72] relies on the pair-wise check

of the similarity between two apps and uses it as the basis
to detect repackaged apps. DroidMOSS proposes to gener-
ate fingerprint via a fuzzy hashing technique to localize and
identify the code changes due to repackaging behaviors. Sim-
ilarly, DNADroid [39] pair-wisely measures the similarity
between two apps to find the cloned attacks. Similarity score
is calculated by applying the VF2 algorithm [38] to com-
pute subgraph isomorphisms existing in program dependency
graphs (PDGs) between methods in candidate apps. To
overcome the scalability limitation due to pair-wise compari-
son, PiggyApp [71] and WuKong [64] adopt the clustering
technique to address the piggybacking and clone detection
among similar mobile apps.
Mining or learning malicious behaviors. A precise
model of malicious behaviors can significantly improve the
accuracy of detection. Previous efforts have been made to
distinguish malicious apps from benign ones by classification.
Crowdroid [34] uses Android API call sequences in Linux
kernel as features. Drebin [25] adopts static analysis to ex-
tract features relevant to malicious attacks, e.g., permissions
and API calls. DroidAPIMiner [21] extracts features from
dangerous Android APIs calls, APIs parameters and package
level information for the classification. MAST [35] selects
permissions, Intent filters, the existence of native code and
zip files, then applies Multiple Correspondence Analysis on
Genome malware collection. Peiravian et. al. [58] take per-
missions and API calls as features to train a model to detect
malware. DroidMiner [67] proposes a two-tiered behavior
graph to model malicious program logic into a vector of threat
modalities, and then applies classification according to these
modalities. DroidSIFT [69] further models API-relevant be-
haviors into weighted contextual API dependency graphs and
classifies malware based on these graphs. Recently, AppCon-

text [68] proposes to differentiating malicious and benign
behaviors based on the contexts: events and conditions that
trigger security-sensitive behaviors. Predictive features are
further extracted from the differentiating results.
There also exist some works on malware model using au-

tomata. Babić et. al. [29] use tree automata to model
malicious behaviors in malware. They use the extracted
system call dataflow dependency graphs to infer k -testable
tree automata. Preda et. al. [60] propose abstract symbolic
automata (ASA) to present the syntactic and semantics of
binary executables. Aiming at identifying the messages be-
tween malware and the environment, Bonfante et. al. [32]
conduct a dynamic analysis on malware, and employ au-
tomata to descriminate types of different execution by an
arbitrary message. SMART is the first attempt to use au-
tomata to describe a whole malware family, with describing
the common and different parts across the malware variants.
Malware detection with other techniques. The tradi-
tional malware detection is based on signature or hashing
matching [46, 36], which is incapable of addressing the ob-
fuscation and malware variants. Information flow analysis
is another effective approach in malware detection, which
usually adopts dynamic or static taint analysis for track-
ing information-flow in mobile apps. For instance, Taint-
Droid [41] and VetDroid [70] use dynamic taint analysis
by instrumenting the Dalvik VM, while Apposcopy [43]
and [45, 26] employ static taint analysis for scalability. In
Apposcopy, results of static taint analysis are combined
with high level signatures of malware to further speed up the
detection. Recently, MUDFLOW [28] leverages static taint

307

void sendIMEI (){

a1 TelephonyManager tm = (TelephonyManager)

getSystemService;͞phoŶe͟Ϳ;
a2 String num = tm.getDeviceId();

a3 URL url = Ŷew URL;URL+͟?imei=͞+imei);

a4 HttpURLConnection con = (HttpURLConnection)

url.openConnectoin();

a5 con.connect();

}

void sendIMEI(){

b1 TelephonyManager tm = (TelephonyManager)

getSystemService;͞phoŶe͟Ϳ;
b2 String num = tm.getLine1Number();

b3 URL url = Ŷew URL;URL+͟?num=͞+num);

b4 HttpURLConnection con = (HttpURLConnection)

url.openConnection();

b5 con.setRequestProperty;͞Accept͟, ͞text/htŵl͟Ϳ;
b6 con.connect();

}

TelephonyManager tm = getSystemService(STRING)

String imei = tm.getDeviceId()

URL url = new URL(STRING)

HttpURLConnection con = url.openConnection()

con.connect()

tm = getSystemService()

URL url = new URL(STRING)

con.connect()

x ϵ {tm.getDeviceId(), tm.getLine1Number()}

Feature vector:

c1: <1, 0, 0, 5>,

c1’: <ϭ, Ϭ, Ϭ, 9>,
t1: <1, 3, 1, 0, 0, 0, 1, 0, 0>

Feature vector:

c2: <1, 0, 0, 6>,

c2’: <ϭ, Ϭ, Ϭ, ϭϭ>,
t2: <1, 3, 2, 0, 0, 0, 1, 0, 0>

MDD = 0.1

a) Code snippets in malware b) Typed 3D-CFG and MDD c) Differences of cloned code d) Corresponding DSA

String num= tm.getLine1Number()

con.setRequestProperty(STRING, STRING)

con = url.openConnection()

y ϵ {con.setRequestProperty(), ε }
ε

a1,b1

a3,b3

a4,b4

a5,b6

a2 b2

b5

S1

S2

S3

S4

S5

S6

S7

Figure 2: A running example of representing malicious behavior in DSA for two samples from DroidKungFu

analysis to detect information leaks via comparing source-
to-sink patterns in malware or benignware, and massively
mines app repositories for patterns of normal data flow. The
mined patterns are used as predictive features for detection.

Different from the previous works, we emphasise the mal-
ware model considering the possible variants. Our proposed
semantic model, which captures commonality and variety of
malicious behaviors, helps to understand the essence of the
attack behind. Our combined approach of malware detection
has advances in resisting both obfuscation and variants of
malware, and overcomes the challenges in scalability.

3. MODELLING ANDROID MALWARE
In the program comprehension domain, deterministic finite

automaton (DFA) has been used to model the program logic
of a method in Android app [23, 66].

DFA can depict a concrete malicious behavior exactly, but
it is inflexible in presenting a behavior with many variants.
Thus, inspired by the fuzzy Android code search engine
Codota [56], we use DSA [59] to model the program logic
of one malicious behavior with variants.

Definition 1. A deterministic symbolic automaton (DSA)
is a 6-tuple (Q, Σ, δ, q0, F , V ars) where Q is a finite set
of states; Σ is a finite alphabet, indicating executed state-
ments in a malicious behavior; V ars is another finite alphabet,
and it is defined as a set of variables which can be assigned
with arbitrary statements. In addition, the symbol ǫ ∈ V ars
denotes a null statement; δ is hereby a revised transition
function: Q × (Σ ∪ V ars) → Q, representing a transition
relation; and F ⊆ Q is a set of final states.

Compared with DFA, DSA is equipped with the capability
of expressing variant events via symbolic variables. V ars in a
DSA is a unique feature that covers the variety of transitions
amongst nodes in the DSA. Similarly, traces(DSA) is the
set of all execution paths 〈s0, s1, s2, ..., sn〉 contained in the

DSA, where s0 = q0, si
ei−→ si+1, ei ∈ Σ and sn ∈ F .

Malicious apps in the same malware family may have slightly
different behaviors, resulting in a set of code clones that
contains one clone instance from each malware variant in
the family. Therefore, each clone set can be summarized as
one DSA, with Q× Σ → Q denoting the common parts and
Q× V ars → Q denoting differences among clone instances.
For a malware family with many variants, we can model

the malicious behaviors using a number of DSA, where each
DSA is summarized from a set of cloned methods in these
variants (§ 5). These DSA together can model the malicious
behaviors shared by these variants, i.e., the signature to

fingerprint this malware family. However, one DSA describes
a behavior involving a series of operations on multiple targets
or resources. To have a fine-grained model of the operations
at implementation level, we propose the concept of Object-
based Actions (OBAs) (§ 5.3.2) to describe low-level atomic
actions relevant to a certain resource in Android OS context.

Based on DSA and OBA, we propose a hierarchical model
with three layers: 1) the top layer is the malware family
model, which summarizes the common behaviors of malware
families. It is modelled by a set of DSA. 2) the middle
layer is an abstract model of a type of malicious behaviors
along with its possible variants. DSA is the representation of
malicious behaviors. 3) the bottom layer models the concrete
objected-based actions (OBAs)—a partial DSA relevant to a
target or resource object for composing a malicious behavior,
e.g., deleting a system file or register entry.

Fig. 1 shows the hierarchical relationship of malware fam-
ily, DSA, OBA and type of attacks. For instance, Droid-
KungFu [50] contains two types of malicious behaviors (DSA):
privacy leakage and privilege escalation. The privacy leak-
age attack involves two OBAs: operations relevant to class
TelephonyManager and HttpClient. The families CruseWin and
SmsReplicator also contain the issue of privacy leakage, while
involving different actions. Note that different OBAs can
compose a specific type of attack, as the object or the resource
under the OBAs decides the nature of the attack.
In our semantic model, we ignore the connections among

DSA (or OBAs), which are data flow or control flow, in the
part of malware family (or attack type). As the implementa-
tions of connections can vary greatly (e.g., data flow among
DSA may use inter-procedural or external channels), we omit
connections among DSA (or OBAs) for scalability issues.
Running Example. We select two samples from malware
family DroidKungFu to show a concrete semantic model and
how it is learned. One malicious behavior of DroidKungFu
is to steal sensitive information (e.g., IMEI code and phone
number), and send the information to a remote server. Fig. 2
shows how the malicious behavior is expressed in three rep-
resentations: typed 3D-CFG used for fast clone detection,
code statements with summarized differences, and finally a
DSA used as its behavior model.

In Fig. 2(a), the common malicious behavior consists of two
main steps: 1) obtain the private data (e.g., the IMEI code or
phone number) — call the instance of TelephonyManager and
invoke its method to access telephone data; 2) leak the data
— create an instance of HttpURLConnection and send the data
via this instance. Despite sharing the same malicious intent,
two samples in Fig. 2(a) are different in implementation: 1)

308

(1) Malicious Behavior Learning (2) Malware Detection and Classification

Android

Malware

Step 1: Typed 3D-CFG

Clone Detection

Step 2: Bytecode

Differencing

Step 3: Malware

Model Construction

func1 func2

func3 …

Clone Set

Clone Set

optional

common

Differencing

Graph

Differencing

Graph

e1

e2

var

e3

e3

Machine Learning
(3) Attack Identification

malware

benign apps

e1

e2

var

e3

e3

e1 e3

DSA:

DFA:

Android

Apps DFA Gen

DSA DB

M1

M2

M3

Feature Ext

M4

OBA

Clone Set Differencing Graph

Malware Classification

Summary:

1. Privacy Leakage (OBA1)

2. Financial Charge(OBA2)

…

DSA:

OBA:

e1

var e3

OBA Extraction

unclassified

Figure 3: The overview of our approach

the first one fetches the IMEI code via getDeviceId, and the
second one gets the phone number via getLine1Number; 2) the
second one additionally invokes setRequetProperty to set up
parameters for the connection.

Instead of modelling two different variants with two sepa-
rate DFA or one combined DFA, we represent the two variants
of malicious behavior of stealing information as a DSA, shown
in Fig. 2(d). The init state of the constructed DSA has a
transition which invokes the method getSystemService. The
DSA proceeds in a subsequent transition which supports a
variable x ∈ {getDeviceId, getLine1Number}. Then, the state
proceeds with another variable y ∈ {ǫ, setRequestProperty},
where ǫ denotes a null event for the transition. Thus, y
denotes an optional operation. By virtue of variables x and
y, this DSA precisely models four different implementations
of behaviors (i.e., four valid variants). Thus this DSA can be
used SMART for detection of variants of malicious behaviors
and malware family classification. Furthermore, by analyzing
OBAs in malware, we can identify the potential attacks that
a suspicious app launches. For example, a contained OBA
(e.g., relevant to TelephonyManager) can be used to identify a
potential information leakage — the class TelephonyManager

contains many methods (e.g., getDeviceId and getLine1Number)
that allow attackers to stealthily obtain sensitive phone data.

4. THE SMART FRAMEWORK
SMART performs the modelling of malicious behaviors of

existing Android malware, and uses these abstract semantic
models to detect unknown malware or new variants. In the
modelling part, the input is the bytecode of malware variants,
and the output is the constructed DSA. In the detection
part, the input is the DSA and a suspicious app, and the
output is the detection and classification result. Fig. 3 shows
the system architecture of SMART, which relies on static
analysis of bytecode and proceeds in two phases:
• Malicious behavior learning. This step is based on
bytecode clone detection and code differencing analysis.
First, we perform bytecode clone detection to identify
security-related clones from the malware variants in a mal-
ware family. Our bytecode clone detection is designed to
tolerate slight differences among clone instances. Second,
we adopt a code differencing analysis to learn both the
common and optional parts of one type of malicious behav-
iors. Then we represent them using a unified statement
graphs with summarized differences in dashed rectangles,
as shown in Fig. 2(c). Last, we generate DSA from dif-
ferencing graph and extract OBAs from DSA based on
consecutive transitions of certain objects.

• Malware detection and classification. We propose
a combined approach for malware detection to achieve

efficiency and accuracy, simultaneously. First, we extract
predictive features of attacks from the summarized DSA.
With these features, we can identify suspicious apps via
ML classification. Second, we perform a static analysis
process, called DSA inclusion check, to determine if the
concrete behavior model of an Android app (in the form
of DFA) is semantically included in any learned DSA. A
match between the DFA of the suspicious app and any
DSA suggests that this app has the malicious behavior.
If this app matches the majority of DSA of a certain
malware family, SMART suggests this app is a variant
of that family. If the DFA of this app fails to match any
DSA, we extract the OBAs from its DFA, and compare
them with those in existing DSA in order to identify the
similar attack at a fine-grained level.

5. LEARNING MALICIOUS BEHAVIORS

5.1 Bytecode Clone Detection
3D-CFG [36, 37] is a structural feature, and used to mea-

sure the similarity between methods in/among Android apps.
The basic idea in [36] is to assign a structural 3D-coordinate
value for each node in the control flow graph (CFG) of a
method, then calculate the mass centroid of these coordinates
as the signature of the method. By checking the distance
between two methods’ centroids, it is decided whether they
are clones.

Definition 2. For a given method, each node in the CFG
is a basic code block. Each node has unique coordinates,
denoted as a 3-tuple (x, y, z) [36], where x is its sequential
number in the CFG; y is the number of its outgoing edges
(control flow in CFG), and z is the loop depth of the node.

3D-CFG with type information.
We propose a type-enriched 3D-CFG, which takes into

account the type information of statements as a part of
method signature to measure the similarity of two clone
methods.

Definition 3. [36] Given a method m, the method sig-

nature −→m = (−→cm,−→cm
′,
−→
tm) is a feature vector containing the

structural and type information of the method, where −→cm is

the centroid, −→cm
′ is the weighted centroid, and

−→
tm is a vector

in which ti depicts the number of occurrences of i-th type of
statements in this method.

The centroid −→cm of a method m is a 4-tuple (cx, cy, cz, w):

• w =
∑

e(p,q)∈3D−CFG
(wp + wq),

• ci =
∑

e(p,q)∈3D−CFG(wpip+wqiq)

w
, where i ∈ {x, y, z}

309

1 String m1(){
2 TM tm=getSysSer();
3 String id=tm.getId();
4 return id;
5 }

1 String m2(){
2 String res=str.rep();
3 rep.rep("suffix");
4 return res;
5 }

Figure 4: A false positive using the 3D-CFG ap-
proach

where e(p, q) is the edge between the node p and q, (xp, yp, zp)
is the coordinate of the node p, and wp is the number of
statements in the node.
To emphasize the importance of invocation statements,

the weighted centroid is defined as −→cm
′ = (c′x, c

′
y, c

′
z, w

′) for
methodm, where w′ = w+N , andN is the number of invoked
statements; c′x, c′y and c′z are recalculated according to the
new weight w′, respectively. For example, for the first method
in Fig. 2(a), the centroid is (1, 0, 0, 5) and the weighted
centroid is (1, 0, 0, 9) (only four invocation statements). Note
that w′ is 9, the sum of w and the number of invocation
statements.
The difference between the centroids of two methods m1

and m2 is the primary condition to evaluate their similarity:

Definition 4. [36] The Centroid Difference Degree (CDD)
of two centroids −→c1 = (c1x, c1y, c1z, w1),

−→c2 = (c2x, c2y, c2z, w2)
(similarly for the weighted centroids) is

CDD(−→c1 ,
−→c2) = max(

|c1x−c2x|
c1x+c2x

,
|c1y−c2y |

c1y+c2y
,
|c1z−c2z |
c1z+c2z

,
|w1−w2|
w1+w2

)

Given
−→
t1 and

−→
t2 that represent the vector of occurrences

of statements with different types in method m1 and m2,
respectively, Type Difference Degree (TDD) is defined as:

TDD(
−→
t1 ,

−→
t2) =

∑
(
|t1i−t2i|

t1i+t2i
)/|{i|t1i 6= 0||t2i 6= 0}|

Given two methods, the method-level difference degree
is defined as the maximum value of their centroid distance
(CDD), their weight centroid distance (weighted CDD) and
also the Type Difference Degree (TDD):

Definition 5. Method Difference Degree (MDD) of two

methods −→m1 = (−→c1 ,
−→c1

′,
−→
t1) and −→m2 = (−→c2 ,

−→c2
′,
−→
t2) is

MDD(−→m1,
−→m2) = max(CDD(−→c1,

−→c2), CDD(−→c1
′,−→c2

′), TDD(
−→
t1 ,

−→
t2))

Benefits of typed 3D-CFG. For the two methods in Fig. 4,
the CDD for their centroids and weighted centroids are both
0 — they have only one path, both represented with a single
block. Thus, they have the exactly same centroid, and will be
clustered into the same clone set. The 3D-CFG method will
treat them as clones. In our typed 3D-CFG, MDD is 5/12,
as TDD is 5/12. If the threshold for MDD is empirically set
to a small constant (e.g., 0.1), they are not clones.

For our example in Fig. 2(a), the CDD between −→c1 and −→c2 ,
i.e., the maximum distance on the elements of 4-tuple, is cal-
culated to be 1/13 and CDD(−→c1

′,−→c2
′) to be 1/11, as shown in

Fig. 2(b). To calculate TDD(
−→
t1 ,

−→
t2), we measure the average

distance of the statement types that appear in m1 or m2 (we
select 9 out of 15 types of statements defined in Soot [63]

in Section 5.2). Since type vector
−→
t1 is 〈1, 3, 1, 0, 0, 0, 1, 0, 0〉

and
−→
t2 is 〈1, 3, 2, 0, 0, 0, 1, 0, 0〉, TDD(

−→
t1 ,

−→
t2) = 1/12. Thus,

MDD for the example in Fig. 2(b) is 1/11.
Pre-filtering of non-malicious clones. To assure that
the clones are related to malicious behaviors, we filter out
non-malicious behaviors in three ways: 1) maintain a white
list of common third-party libraries not to be considered in
clone detection step. It includes 89 ads libraries, 18 social
sdks, and 201 development tools [24]; 42.4% of malware
samples include these common libraries. Thus, this step
greatly improves the soundness of malware model learning. 2)

Table 1: Elements to compare for different state-
ments

Statement Type Elements to compare

a = new Class() IDENTITY TYPE(a), TYPE(Class)
a = expr ASSIGN TYPE(a), TYPE(expr)

invoke count(a) INVOKE NAME(count), TYPE(a)
if(a > b) IF-ELSE TYPE(a|b), TYPE(>)

goto a GOTO
return RETURNVOID

switch(a) SWITCH TYPE(a)
return a RETURN TYPE(a)
throw e THROW TYPE(e)

set a threshold (denoted as θ1) to retain the clones relevant to
most variants in a family, since not all variants share the same
clone set (possibly containing common malicious behaviors).
For example, 11 out of 14 (78.6%) variants of family Zitmo
send users’ incoming SMS messages to attackers via HTTP,
while the others via SMS. For the clone set sending privacy
via HTTP, if the ratio of the number of its clone instances to
the total number of variants in the family (78.6%) exceeds
a predefined threshold (e.g., θ1 = 75%) [51], we regard it
as being attack related. 3) verify the clones according to
the knowledge of malicious code. For samples in Genome,
package and class name of malicious code can be identified.

5.2 Bytecode Differencing
After clone detection, we can get a number of clusters

of similar code at method level. We summarize them by
identifying the common and also different parts of these
cloned methods with a bytecode differencing algorithm. The
basic idea of the differencing algorithm is borrowed from
the concept of progressive alignment [42] in multiple DNA
sequence alignment. Instead of using pair-wise comparison
with complexity of O(n2), we compare n cloned methods in
n− 1 times. Specifically, we first compare two methods with
the least MDD and get results in the form of a differencing
graph (e.g., Fig. 2(c)). Then, the other n − 2 ones are
gradually compared to the intermediate differencing graph.
Finally, a differencing graph unifying the commonality and
variability among cloned methods is built.

Algorithm 1 depicts the bytecode differencing step. The
input is a set of CFG G of the methods in a clone set. Given
a CFG g, v(g) is the set of vertex of g; children(g, n) de-
notes the successors of the node n in g. The algorithm
returns a differencing graph Gr, which aggregates the input
graphs with matched common nodes and summarized op-
tional nodes. First, we sequentialize the statements of each
CFG at bytecode level via a preorder traversal (implemented
using BodyExtractorWalker in Soot) (line 1); then we employ
longest common subsequence (LCS) [54] to calculate common
statements shared by these cloned methods (line 2). For
example in Fig. 2 (c), running LCS for these two methods
gives commonTokens = {(a1, b1), (a3, b3), (a4, b4), (a5, b6)}.
Here, the matched statements n1, n2, . . . , to ni from differ-
ent methods are denoted as the equivalent class {n1, . . . , ni}.
LCS at line 2 is adopted in [54] and [49] for source code
differencing, while we adopt it for bytecode differencing.

In calculating LCS, a typed approach is used to determine
the equivalence of two statements, We consider 9 basic types
as listed in Table 1. Other statement types like NOP and RET

are omitted as they do not carry any semantic meaning. Most
types in Table 1 only use type information for comparison,
except that the type INVOKE that needs textual matching
for the name of invoked method. The rationale is that
most textual information like customized variable or method

310

Algorithm 1: Bytecode Differencing

Input: G is a set of CFGs of cloned methods
Output: Gr is a differencing graph

1 list〈list〈Stmt〉〉 tokens := preorder traversal(G);
2 list〈set〈Stmt〉〉 commonTokens := LCS(tokens);
3 let v(Gr) ← ∅ be the set of vertex in Gr;
4 for set〈Stmt〉 node ∈ commonTokens do

5 v(Gr) = v(Gr) ∪ node;

6 for g ∈ G do

7 for src ∈ v(g) do

8 List〈Node〉 dstList := children(g, src);
9 Node nSrc = findNode(Gr, src);

10 for dst ∈ dstList do
11 Node nDst = findNode(Gr, dst);
12 Gr.addEdge(nSrc, nDst);

13 return Gr;

names are lost after compilation and obfuscation. Only the
full method names of Android APIs are kept. In Fig. 2
(c), statement pairs (a1, b1), (a3, b3), (a4, b4) and (a5, b6) are
identical since they invoke the same Android APIs with the
same parameter type String, regardless of the String value.
(a2, b2) is not identical as they invoke different Android APIs.
Additionally, b5 is optional and unmatched to any statement
in the first method, denoted as (ǫ, b5).

Lines 6-12 in Algorithm 1 add the original control flow rela-
tionship between statements existing in G to the correspond-
ing statements in graph Gr. Finally, in Gr the vertex is either
identical (common amongst cloned methods), or optional
(different amongst cloned methods). Gr retains the original
control flow relationships. At line 9, findNode(Gr, src) is
to find the node in Gr which contains src. As shown in
Fig. 2(c), the control flow relationship between (a1, b1) and
(a2, b2) is added back. Similarly, all the other relationships
between statements in G can be recovered.

5.3 Semantic Model Construction

5.3.1 DSA Construction

After obtaining differencing graphs for summarized cloned
methods, we construct the corresponding DSA. The conver-
sion from a differencing graph to a DSA is a line-digraph
problem that has been nicely addressed in [47]. Statements
with summarized differences are represented with variables
in DSA. In Fig. 2(c), the matched statement pair (a2, b2),
in which a2 and b2 are not identical, can be represented as
variable x—invoking either getDeviceId or getLine1Number. As
there is no matched statement in the first method for b5,
variable y is used to denote either an optional invocation of
setRequestProperty or null operation (ǫ).
To capture the essence of malware, we apply two filters

to remove the statements regardless of their summarized
differences during the construction of DSA. First, we filter
out the statements that contain no invocation or branch
information, such as int a=10 and return a. However, the
statements with branch information like if (a>10) will be
kept. The rationale to remove these statements is that—
they have no direct interaction with the Android system
or the external environment, which means that it can only
operate its enclosed data and internal logic in apps, but not
directly impact on Android and the external environment [69].
Second, we filter out the statements invoking methods that
are not Android APIs. Thus, invocations of methods from
third-party libraries are pruned. As the detection is Android-

Algorithm 2: Objected-based Action Extraction

Input: D is a DSA
Output: OBAs is a list of OBA, initially empty.

1 for node ∈ D do

2 for initialized object obj ∈ node do

3 partial DSA d = forward slicing(obj);
4 OBA = {ds|node ∈ d ∧ node.contains(obj)};
5 OBAs = OBAs ∪ OBA;

6 return OBAs;

API name sensitive (§ 6) and methods from third party
libraries are easily obfuscated (e.g., Proguard [53]), we keep
invocations to Android APIs that cannot be easily altered.

5.3.2 Object-based Action Extraction

To provide a fine-grained model for malicious behaviors,
we perform an OBA extraction on the DSA. One malicious
behavior can be split into several atomic actions, and any
two actions may have data flow dependency in between.
As illustrated in Fig. 2(d), the behaviors represented by

the DSA invoke 5 or 6 operations. Intuitively, these opera-
tions can be roughly grouped into two OBAs with meaningful
semantics—obtain sensitive information and send out the
information. Specifically, the former action is realized via
calling the method getDeviceId or getLine1Number in class
TelephonyManager; the latter calls a sequence of methods
〈openConnection, setRequestProperty+, connect〉 in class HttpURL-

Connection. For these API usage patterns related to a specific
object, we call them object-based actions (OBAs). In addi-
tion, to obtain a complete lifecycle for an object, we consoli-
date the creation and invocations of this object. In Fig. 2 (a),
statement a1 returns the global instance of TelephonyManager.
Combining the creation (a1) and the invocation (a2) of the
object, we obtain a complete OBA for TelephonyManager.
Algorithm 2 depicts the process to extract actions from

DSA. First, we traverse the nodes contained in DSA (line
1). OBAs usually begin with an initialization, i.e., the afore-
mentioned creation of an object, which can return an ob-
ject of a certain class (line 2). For example, the statement
tm=getSystemService() in our running example. Then, we use
forward slicing [31] to get a partial DSA of which nodes con-
tain the object (lines 3, 4). For example, the invocation of
the method getDeviceId in TelephonyManager is categorized into
TelehonyManager-based actions. Last, Algorithm 2 returns a
list of OBAs, e.g., two OBAs (one TelephonyManager-based
and one HTTP-based) are returned for the running example.

6. MALWARE DETECTION AND CLASSI-

FICATION
The learned DSA can be utilized as signatures (in the form

of directed graphs) for malware detection and classification.
However, the direct searching based on DSA matching is not
scalable [69]. In this section, we propose a combined approach
that fast filters out benign apps via machine learning, and
then conducts DSA inclusion check on the suspicious apps.

6.1 Machine Learning Based Detection
To enable fast malware detection, a machine learning clas-

sifier is trained to detect malware. Particularly, two types of
features we use for machine learning are listed as follows:
Feature used in previous studies. Basically, features
derived from Risky Android API (denoted as feature set

311

F1) and Bigram call sequence of risky APIs (denoted as F2)
are widely used in existing malware detection on Android.
Risky Android APIs refer to APIs with high risks if not

properly used by users. Usually, the invocations of these
risky Android APIs potentially lead to certain malicious
behaviors without the awareness of users. We select 469 risky
Android APIs [27] that are frequently used in malware, e.g.,
getLine1Number to access phone number and sendTextMessage

to send an SMS message. In Table 2, 189 out of 469 Android
APIs appear in the malware code and constitute F1 .

Bigram call sequence of risky APIs refer to 2-length call
patterns of risky APIs that highly likely appear in mali-
cious behaviours. For example, malware Zitmo and benign
app Wechat both register a BroadcastReceiver to receive in-
coming SMS messages. Then Zitmo sends messages to a
remote server, while Wechat only shows messages to the
local user. Inspecting call sequences of APIs provides more
information on the intention of behaviors, and distinguishes
malicious apps from benign ones. Hence, we perform an
inter-procedural analysis to extract bigram call sequence as
F2. In Table 2, out of all bigram call sequences of the 189
risky APIs, 5923 bigram features appear in malware code
and constitute F2 .
Selecting features according to DSA. To guarantee the
comprehensiveness of features, we first add more APIs into
F1 – 182 APIs which do not acquire permissions but are
commonly used in malware (e.g., getContentResolver), 147
APIs that are related to Java reflection, and 2 APIs that
are used to invoke native code. Second, we extract more
abundant bigram call sequences of APIs. However, using
all features of APIs and bigram call sequences leads to the
problem of curse of dimensionality [10]. To mitigate this
problem, we select APIs and bigram call sequences existing in
DSA as F3. In Table 2, compared with F1&F2 , F3 contains
the features and bigram features of the 182 extra APIs that
we consider. Note that each feature in F3 is required to be
contained in at least one DSA.

After specifying feature vectors, we apply machine learning
to train a classifier which can distinguish malicious apps from
benign ones. We employ the Random Forest classifier [33]
(it achieves the best classification result based on our ex-
periments in Section 7.2) to gain a well-trained model from
the training set. According to classification results, we can
determine if one candidate app is benign or suspicious. For
the suspicious apps, we will conduct the DSA based detection
to confirm, classify them into known malware families, and
identify the attacks involved.

6.2 DSA based Detection and Classification
The list of suspicious apps resulting from machine learning

step contains false positives, which requires further scrutiny.
Thus, to confirm these suspicious apps, we propose the DSA
based static analysis, which proceeds in three phases: 1)
DFA construction. For a given Android app, we analyse and
construct one DFA for each method contained in this app.
As shown in Fig. 5, method getImei in this app is converted
into a DFA, illustrating the control flow of the method. In
this way, we can obtain a set of DFA for an app; 2) Inclusion
querying. The extracted DFA will be sent to inquiry the
DSA database. In this paper, we perform a DSA inclusion
algorithm to determine if any DSA of malware includes this
DFA. If one of the DFA in the app is identified as being
included in any DSA in the malware family A, it is called a

DSA DB

Android App

void getImei(){

 TelephonyManager tm = getSystemService();

 String imei = tm.getDeviceId();

 HttpURLConnection c = new URL().openConnectoin()

 c.connect();

}

getSysSer getDevId

(1) DFA Construction

(2) Inclusion Querying

(3) Malware Assessment

…

…
…

APP =

DFA1

DFA2

DFA3

P(Mal) = |����೙�||����೚���|

new URL

openConnection

connect

S1
’
 S2

’ S3
’ S4

’

S5
’ S6

’

Figure 5: The process of DSA based detection

match to A; 3) Malware assessment. We identify the number
of matches as well as its proportion for each malware family,
and determine that the app is malicious if the proportion is
larger than a certain threshold (denoted as θ2).
DSA inclusion is to check if all accepted paths in a given

DFA are also accepted in the DSA. We define it as follows:

Definition 6. A DFA dfa is included in a DSA dsa iff

traces(dfa) ⊆ traces(dsa).

Given one DSA, the inclusion check answers whether all
paths in the DFA can be found in the DSA or not. We adopt
the anti-chain algorithm [40, 65] to check whether a DFA is
included in the DSA (more details in [18]). For a method
from the suspicious app in the previous step, if the DFA in
Fig. 5 fails to match any learned DSA, it appears that the
suspicious app may not reuse the existing attack behaviors
or fall into an existing malware family. For further scrutiny,
we check if the DFA complies with one or multiple OBAs via
OBA inclusion (i.e., checking whether the DFA is included
in the OBA, as an OBA is a partial DSA). Consequently, we
identify the attacks that highly co-occur with the matched
OBAs. In Fig. 5, the DFA matches two kinds of OBAs, i.e.,
TelephonyManager-based action to access IMEI code and HTTP-
based action to transfer information, suggesting a potential
privacy leakage attack.

7. EVALUATION
SMART is implemented in Java with 10K+ LOC. The

experiments are conducted on a Ubuntu 14.04 desktop with
Intel Xeon(R) CPU E5-16500 and 16G Memory. Details on
SMART and experimental data are available in [18]. The
data sets used in our experiments are as follows:

• Malware benchmark for training (D1). We use the
latest Drebin [25] malware collection containing 179 mal-
ware families and 5,560 malware apps. Note that Drebin

includes the famous malware collection Genome that con-
tains 49 malware families and 1,260 samples.

• Real-world Android apps (D2). We crawled totally
223,170 apps from Google Play and 16 popular third party
marketplaces. These marketplaces are deployed either in
US or China. These apps are collected from 2013 to 2016.

• Benign apps for training (D3). We select 5,600 apps
in Google Play, on which 99.8% of available apps are
benign according to [74]. We verify the benignity of these
apps based on the report of VirusTotal [19] and collect
5,560 benign ones.

312

getSystemService()

getDeviceId() execute()

new DefaultHttpClient()

getSubscribleId()

getLine1Number()
x

x

x
openConnectoin()

TelephonyManager-based Actions HTTP-basedActions

y

connect()

z

getResponse()

getDefault()
sendDataMessage()

SmsManager-based Actions

sendTextMessage()

sendMultipartTextMessage()

Privacy

Leakage

Financial

Charge

Figure 6: The DSA and actions for common attacks

Note that D1&D3 constitute the labelled training dataset
used in Table 2 and Table 3; D2 is the unlabelled dataset
used for wild prediction on unlabelled apps in Table 4. The
experiments are conducted to evaluate our approach in terms
of five aspects explained in the subsections.

7.1 RQ1: Evaluation of the Semantic Model
Controlled experiments on the data set of Drebin [25]

are conducted to evaluate the usefulness of our semantic
models. For each malware family, we generate a set of DSA
and extract the corresponding OBAs to characterize attack
behaviors. On average, there are 101 DSA learned for each
family, which denotes the average complexity of attacks
involved. There are around 20 nodes (i.e., code statements)
on average in one DSA, containing about 6 variables that
occupy 30% of all nodes in one DSA. In addition, we identify
20 types of OBAs with 193 variants existing in Drebin.
See [18] for detailed models.
Soundness & completeness. To justify the soundness of
the DSA models, we select a number of samples for each
malware family in Drebin. We omit the families with only
one sample, as a DSA generated from one sample is identical
as the corresponding DFA. We find that all of the selected
samples are correctly detected as malware. It proves that the
constructed DSA are able to capture the essential parts of
known malware. With an in-depth inspection of constructed
DSA of 179 malware families, we confirm that the set of
DSA for each malware family contains at least one malicious
behavior. This proves the completeness of learned DSA—
each malware family has malicious behaviors modelled as
DSA. Moreover, due to the filtering mechanisms in bytecode
clone detection in Section 5.1, we may omit a few malicious
behaviors existing in the minority of variants. However, the
common malicious behaviors are retained in the form of DSA.
As the OBAs are extracted from DSA and related to the

“assets” users possess, they are capable of composing attacks.
The two examples of attacks in Fig. 6 demonstrate the sound-
ness of OBAs. The attack privacy leakage contains two basic
operations: access sensitive information and send out the
information. According to the result of OBA extraction, we
find that the attack of stealing phone’s profile can be imple-
mented via TelephonyManager-based and HTTP-based actions.
Similarly, the attack financial charge only involves one type
of actions, i.e., SmsManager-based actions. As 20 types of
OBAs are verified to be related to the assets exploitable by
attacks, the OBAs cover the 6 common attacks (See [18]) in
Drebin, indicating the completeness of OBAs.
Observations of malware evolution. Since DSA is a
comprehensive summarization of malware variants, we ob-
serve malware evolution from the generated DSA. Specifically,
two ways of malware evolution or mutations to variant are

Table 2: Accuracies of classifiers using different
feature sets on the training dataset that contains
Drebin
Feature Set # Features Precision Recall F-Measure

F1 189 92.4 92.3 92.3
F2 5923 95.2 95.0 95.0

F1 & F2 6112 95.4 95.3 95.3
F3 12514 97.0 97.0 97.0

observed: 1) In many malware families, variants are evolving
in non-functional content, such as parameters (e.g., the ad-
dress of remote server and the number of receiving phones)
— malware variants of parametrised clones; 2) Variants in
some malware families are enhanced by supporting more
similar operations — malware variants of gapped clones. For
example, Zsone registers a BroadcastReceiver to monitor the
reception of SMS, and cancels the broadcast if the message
comes from premium numbers. Meanwhile, it keeps adding
new premium numbers in its variants. Most of this type of
variants can be captured by our clone detection.
Summary. DSA can effectively model and help to detect
the malware variants with exact clones, parameterised clones
and clones containing small gaps. However, in our evalua-
tion, we find one FN case missed by SMART—replacing
functional code by equivalent code (e.g., DroidKungFu uses
Socket to replace DefaultHttpClient to perform the communica-
tion operation) or using advanced obfuscation (e.g., String
encoding, reflection and native code).

7.2 RQ2: Malware Detection based on ML
In this experiment, we select 5,560 malware samples in

Drebin and 5,560 benign apps from Google Play as our data
set, and evaluate the results of different classifiers and the
enhancement via DSA of machine learning based malware de-
tection. All experimental results are obtained by performing
10-fold cross validation (CV).
The accuracy of the detection classifiers. To evalu-
ate the accuracy of our training model, we extract features
F3 (§ 6.1) from DSA in our data set. We compare these
classifiers: AdaBoost (87.8%), C4.5 (93.8%), Linear SVM
(90.4%), Näıve Bayes (81.6%) and Random Forest (97.0%).
It is concluded that Random Forest achieves the best classi-
fication result. Hence, we employ Random Forest to train
our model.
DSA-enhanced classifier.

We set up a comprehensive experiment to investigate the
usefulness of different feature sets and DSA in the classi-
fication. Table 2 shows that feature set F3 achieves the
best result with the Random Forest classifier. As introduced
in Section 6.1, feature set F1 derived from risky APIs is
used in recent study [21]. Feature set F2, which also has
features derived from bigram call sequences, is evaluated in
the state-of-the-art tool [57]. Thus, feature set F3 derived
from our DSA is more effective in detecting malware than
feature sets F1, F2 and its combination. The rationale is that
F3 excludes many bigram call sequences that do not relate
to malicious behaviors, and moreover, provides significant
features from DSA such as reflection and invocation of native
code.

Moreover, we list significant features which can effectively
distinguish malware from benign apps in Table 3. The first
two columns in Table 3 show the most remarkable features as
well as their weight in the classification extracted from DSA. 3
out of top 5 features are related to the access to local storage,

313

which are commonly used in Android malware to dynamically
load payload (e.g., BaseBridge), store sensitive information
(e.g., DroidKungFu), which are rarely used in benign apps;
and the second two columns show features extracted from
the whole code. In these five remarkable features, bigram call
sequences pause → start and setVideoPath → pause are related
to the operation of video player in Android. Generally, they
are not considered the components of malicious behaviors.
As a result, the top features extracted from DSA are more
reasonable and representative for malicious behaviors (see
the full list of weights of features in [18]); the third two
columns show the significantly different features and their
difference between these two experiments.
Summary. In the 10-fold CV training, SMART achieves
the highest accuracy (97%) when using F3 with Random
Forest, by virtue of the feature selection based on the DSA.

7.3 RQ3: Evaluation on Real World Apps
We collect 223,170 free Android apps from Google play

and third-party Android markets. The data sets are listed
in Table 4 with the corresponding total number, and the
number of suspicious apps detected by SMART as well as
prestigious anti-virus (AV) tools, including AVG (AG), Avast
(AT), BitDefender (BD), F-Secure (FS) and Sophos (SO).
As shown in Table 4, SMART can detect 4,583 (2.1%) out
of all collected apps based on machine learning (ML), while
anti-virus tools only regard totally 527 (2.5%) of the 4,583
as malware. With the DSA inclusion check (DSA), SMART

rightly classifies 527 (out of 4,583) samples into 23 known
malware families — this implies that the approach based on
DSA has consistent results with that based on ML, while ML
reports more suspicious ones. According to DSA inclusion
check, about 2.5% of the malware are classified into existing
malware families from Drebin, while others are not due to
the timeliness of Drebin. Our training data set Drebin is
mainly collected from 2010 to 2013, while real-world apps
are collected from Dec. 2013 to Jan. 2016. Plenty of known
malware had been removed from each marketplace. Still,
among the detected variants detected by DSA inclusion, we
identify 22 variants of family Boxer and 12 variants of family
Foncy, both of which send unauthorized SMS.
We perform attack identification for the suspicious apps

(reported by ML) via extracting OBAs. We identify the 5
most popular actions employed by these apps, which are
TelephonyManager-based actions (89.9%), HTTP-based actions
(71.6%), ContentResolver-based actions (66.1%), AssetManager-
based actions (53.9%), and SmsManager-based actions (40.0%).
We have manually checked 100 apps, and 76% of them are
found containing malicious behaviors, which are mainly pri-
vacy leakage and sending SMS message to premium numbers.
Taking the app “Super SMS Quick Delete” from AppsApk for
example, we extracted OBAs existing in this app, and found
it had TelephonyManager-based actions, with which it can ac-
cess IMEI, IMSI, etc. In addition, it had SmsManager-based
actions which can send SMS messages via sendTextMessage, as
well as HTTP-based actions. It is concluded that this app can
expose sensitive information to attackers. All the analysis
results can be found at [18].
Summary. The ML (using F1&F3) and DSA inclusion in
SMART detect more malware variants than the AV tools.
Compared with ML, DSA inclusion is susceptible to the time-
liness of the training set for family identification. However,
it is more tolerant of malware variants. In contrast, AV tools

detect more malware while many of them (76.6%) belong to
Adware, which are not considered by SMART.

7.4 RQ4: Resilience to Malware Variants
To validate the resilience of SMART to the transformation

attacks [61] and advanced variants, we compare the detection
rate of SMART with other AV tools on manually crafted
variants of known malware. The malware variants are crafted
in three ways: 1) employ transformation attacks [61] to
generate malware variants for testing (variants 1-11); 2)
remove the malicious code from malware to test the false
positive rate (variant 12); 3) craft malicious apps in terms of
DSA and actions summarized from the malware collection
(variant 13). The variants are published at [18].

As shown in Table 5, SMART exhibits the highest detec-
tion rate, as our combined detection approach (ML+DSA)
considers the essential part of malware that are unchanged
in these variants. AV tools achieve overall 32.3% detection
rate of these variants. Note that the tool SO, which detects
79 real-world malware, fails to detect any crafted variants.
By careful inspection of its mobile app, we infer that it relies
on exact matching of signature of malware. Besides, we learn
three kinds of features utilized by AV tools as follows:

• Non-code files. Specifically, the file AndroidManifest.xml,
which declares acquired permissions, activities, services,
etc., is scanned. BitDefender can resist two complex
transformations (variants 8, 9) when retaining Android-
Manifest.xml, but fail when removing it.

• Structure of code files. AV tools check the structure of
classes and methods in an app. Thus, if we keep the struc-
ture of the original app, however, remove the malicious
code inside, these AV tools produce false positives.

• Lexical features of code. We create a new variant
(No. 13) by following the DSA in malware family SMSSpy,
which differs from the original malware in lexical features.
None of AV tools is capable of detecting it.

Summary. SMART is capable in identifying malware vari-
ants according to transformation attacks. Variants generated
according to DSA, e.g., 4 variants derived from Figure 2(d),
can bypass the above three strategies of AV tools.

7.5 RQ5: Scalability & Efficiency
Wemeasure the performance for the two phases of SMART,

the offline model learning, and online malware detection and
classification.

Offline model learning mainly consists of two computations:
1) typed 3D-CFG generation and 2) clone differencing and
DSA generation. Given categorized malware data, we only
need to perform model learning once. For each family of
malware in Drebin, the average time for clone detection
is 72.5s, and in total it takes around 3.6h for 179 families.
The clone differencing and DSA generation needs 167.5s on
average. Although it takes a long time (around 19 days) to
generate all 18,000 DSA, it only needs to be done once and
the computation can run in parallel using multiple machines.
Online malware detection consists of two steps: 1) ML

based malware detection and 2) DSA based inclusion for
family classification. To check if an app is malicious, the ML
step takes 13.4s on average (13.3s for feature extraction and
0.1s for prediction). If the app is detected as malware, it
takes 105.9s on average to perform DSA based classification

314

Table 3: Top features w/o DSA of machine learning
Features in DSA Features in code Most different features
Features Weight Feature Weight Feature Difference

getCacheDir 0.19 getDatabasePath 0.22 getCacheDir → getDatabasePath -0.20
getContentResolver → openInputStream 0.13 getCacheDir → getDatabasePath 0.21 getDatabasePath -0.18

getPackageManager → getContentResolver 0.13 getContentResolver → openInputStream 0.17 setVideoPath → pause -0.16
openInputStream 0.10 pause → start 0.17 pause → start 0.16

openXmlResourceParser 0.07 setVideoPath → pause 0.16 getPackageManager → getInstallerPackageName 0.09

Table 4: The data sets for evaluation on real-world
apps

Marketplace # App
SMART Anti-Virus Tools

ML DSA AG AT BD FS SO
AndroidDrawer [2] 11731 200 5 246 152 200 212 187
AnZhi [3] 46757 848 34 702 613 276 300 796
Apkmirror [7] 23441 165 11 201 180 79 165 88
AppsApk [1] 2481 86 26 40 23 8 12 43
ChinaMobile [8] 1714 61 10 384 118 98 102 443
Coolapk [9] 19969 452 25 402 241 40 80 242
Eoemarket [11] 5895 101 3 953 346 433 606 780
FDroid [4] 4533 139 29 10 8 3 5 3
Flyme [12] 10927 614 121 1281 122 305 488 366
GetJar [13] 42633 498 89 2322 211 205 1233 1055
GFan [14] 1000 75 7 89 65 70 62 54
Google Play [5] 7643 45 37 220 81 55 89 41
Huawei [15] 9856 275 49 1730 1128 526 679 828
SlideMe [6] 5770 63 8 866 523 325 124 324
Wandoujia [20] 3066 163 20 189 50 120 156 62
Wangyi [17] 7272 120 8 138 142 98 86 87
Xiaomi [16] 18482 678 45 2497 999 1005 1332 1539
Total 223170 4583 527 12270 5002 3846 5731 6938

Table 5: The capability of detecting malware vari-
ants

Malware Variants SMART
Anti-Virus Tools

AG AT BD FS SO

1. Repacking ✓ ✓ ✗ ✓ ✓ ✗

2. Dis- and Re-assembling ✓ ✓ ✗ ✓ ✓ ✗

3. Changing Package Name ✓ ✓ ✗ ✓ ✓ ✗

4. Identifier Renaming ✓ ✓ ✗ ✓ ✓ ✗

5. Data Encryption ✓ ✗ ✗ ✓ ✓ ✗

6. Call Indirections ✓ ✗ ✗ ✓ ✓ ✗

7. Code Reordering ✓ ✗ ✗ ✓ ✓ ✗

8. Junk Code Insertion ✓ ✗ ✗ ✓ ✗ ✗

9. Function Out- and Inlining ✓ ✗ ✗ ✓ ✓ ✗

10.Other Simple Transformations ✓ ✗ ✗ ✗ ✗ ✗

11.Composite Transformations ✓ ✗ ✗ ✗ ✗ ✗

12.Remove Malicious Code ✗ ✓ ✓ ✓ ✓ ✓

13.Construction based on DSA ✓ ✗ ✗ ✗ ✗ ✗

Detection Rate (%) 100 30.8 0 69.2 61.5 0

to confirm and classify it according to the 18,000 DSA in our
database. Assuming the probability of an app detected by
ML is 0.03 (§ 7.3), the expected time for the detection and
classification is 16.6s for each app, which makes SMART

efficient for a large-scale scan.

8. DISCUSSION
Threat to validity. Threats to internal validity come from
two thresholds used in bytecode clone detection θ1 in Sec-
tion 5.1 and malware assessment θ2 in Section 6.2. A high
value of θ1 leads to few accidental clones but also few valid
clones that are partially shared by malware variants, and
vice versa. θ2 intuitively specifies the maximal tolerance
to the mutation of malware. If θ2 is high, the DSA based
approach can achieve more accurate results while tolerate
less mutations of variants, and vice versa. Threats to exter-
nal validity are two-folds: the timeliness of malware dataset
and the deficiency of static analysis in our machine learning
approach. Since the new malware is emerging every day and
our DSA based approach performs an accurate matching
with known malware, it can degrade the result if apps con-
tain new malware that is not included in the known malware
collection; Similar to [28], we do not carry out a complete
static analysis to elevate the performance in ML approach.
Inherently, static analysis is susceptible to dynamic loading
and reflection, which is another threat to external validity.

Sufficiency of DSA in modelling Android malware.
According to [73], malware samples in the same family carry
similar malicious behaviors, which lead to clones involving
similar attack targets and manners. Hence, malicious behav-
iors can be well captured with clone detection, and DSA can
present the essential parts of malicious behavior while remain
the variety of malware variants. Second, Android attacks
usually call the OS built-in API. Thus we model the API
call as the transition in DSA. The new attack that dynam-
ically loads malicious payloads may not have the oblivious
behaviors or DSA [62], but it still relies on some reflection
APIs to conduct loading. Last, to avoid the path explosion
problem, condition guards (arguments of API invocation)
are not considered in the behavior model of DSA or DFA.
Similarly, existing work on Android API dependency graph
does not consider invocation arguments.
Usefulness of DSA in malware detection. As DSA can
capture the common malicious behaviors, we use the learned
DSA to guide the feature extraction in Drebin (i.e., only
extracting the concerned features included in DSA). Even
using thousands of extra features derived from the 182 extra
APIs (§ 5.3), the ML training stage becomes more efficient
with 10% reduction of running time yet without affecting
the accuracy (both as high as 98%). Besides, compared
with other tools, SMART has the advantage in finding fine-
grained attack actions, representing them as OBAs based on
analysis of source-sink path [28] and control flow graph [22].
Enhancement of ML based malware detection. Fea-
tures of bigram call sequences of Android APIs, especially
those contained in DSA, can improve the detection accuracy
of the ML based approaches by 5%-10%. As bigram call
sequences retain the direct relationship between APIs, it can
effectively depict coarse grained malicious behaviors [69, 28].
We limit the n-gram analysis of call sequence to bigram due
to the efficiency issue. Note that the results of evaluation of
SMART on testing datasets show that the introduction of
bigram features does not cause overfitting problem, as the
FP (13.7%) rate of SMART is still low.

9. CONCLUSION
In the paper, we built a hierarchical semantic model for An-

droid malware. We developed a framework, named SMART,
to automatically learn models from malware, and use a com-
bined approach of machine learning and DSA inclusion to
detect and classify malware. Experiments show that our
approach can achieve both efficiency and scalability.

10. ACKNOWLEDGMENTS
This research is supported in part by the National Re-

search Foundation, Prime Minister’s Office, Singapore un-
der its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-30) and administered by the Na-
tional Cybersecurity R&D Directorate.

315

11. REFERENCES
[1] Android Apps, Download APK, Android Applications,

Android APK. http://www.appsapk.com/, 2014.

[2] AndroidDrawer.com - APK Download of Free Android
Apps. http://www.androiddrawer.com/, 2014.

[3] AnZhi. http://www.anzhi.com/, 2014.

[4] F-Droid: Free and Open Source Android App
Repository. http://f-droid.org, 2014.

[5] Google Play. http://play.google.com/store/, 2014.

[6] SlideME | Android Apps Market: Download Free &
Paid Android Applications. http://slideme.org/, 2014.

[7] APKMirror - #APKPLZ #SOONBACKANSWER.
http://www.apkmirror.com/, 2015.

[8] ChinaMobile. http://mm.10086.cn/, 2015.

[9] Coolapk. http://www.coolapk.com/, 2015.

[10] Curse of dimensionality.
http://en.wikipedia.org/wiki/Curse of dimensionality,
2015.

[11] EOEMarket. http://www.eoemarket.com/, 2015.

[12] Flyme. http://app.flyme.cn/, 2015.

[13] GetJar - Download Free Apps, Games and Themes
APK. http://www.getjar.com/, 2015.

[14] GFan. http://apk.gfan.com/, 2015.

[15] Huawei. http://appstore.huawei.com/, 2015.

[16] Mi. http://app.mi.com/, 2015.

[17] Netease. http://m.163.com/android/, 2015.

[18] SMART: Semantic Modelling of Android Attacks.
https://sites.google.com/site/droidsmat2015/, 2015.

[19] VirusTotal - Free Online Virus, Malware and URL
Scanner. https://www.virustotal.com, 2015.

[20] Wandoujia. http://www.wandoujia.com/apps/, 2015.

[21] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android. In SecureComm, volume 127, pages 86–103,
2013.

[22] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon.
Machine Learning-Based Malware Detection for
Android Applications: History Matters! Technical
report, May 2014.

[23] R. Alur, P. Cerný, P. Madhusudan, and W. Nam.
Synthesis of Interface Specifications for Java Classes. In
POPL, pages 98–109, 2005.

[24] AppBrain. Android Library Statistics.
http://www.appbrain.com/stats/libraries, 2015.
[Online; accessed 02-Jan-2015].

[25] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck. Drebin: Effective and Explainable Detection
of Android Malware in Your Pocket. In NDSS, 2014.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In PLDI, pages 259–269, 2014.

[27] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
PScout: Analyzing the Android Permission
Specification. In CCS, pages 217–228, 2012.

[28] V. Avdiienko, K. Kuznetsov, A. Gorla, and A. Zeller.
Mining Apps for Abnormal Usage of Sensitive Data. In
ICSE, 2015.

[29] D. Babić, D. Reynaud, and D. Song. Malware Analysis
with Tree Automata Inference*. In CAV, pages
116–131, 2011.

[30] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek.
COVERT: Compositional Analysis of Android
Inter-App Permission Leakage. 41(9):866–886, 2015.

[31] J.-F. Bergeretti and B. A. Carré. Information-flow and
Data-flow Analysis of While-programs. TOPLAS,
7(1):37–61, Jan. 1985.

[32] G. Bonfante, J.-Y. Marion, and T. D. Ta. Malware
Message Classification by Dynamic Analysis. In FPS,
pages 112–128, 2015.

[33] L. Breiman. Random Forests. Machine Learning,
45(1):5–32, 2001.

[34] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: Behavior-based Malware Detection System
for Android. In SPSM, pages 15–26, 2011.

[35] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck.
MAST: Triage for Market-scale Mobile Malware
Analysis. In WISEC, pages 13–24, New York, NY,
USA, 2013.

[36] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy
and Scalability Simultaneously in Detecting
Application Clones on Android Markets. In ICSE,
pages 175–186, New York, NY, USA, 2014.

[37] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang,
H. Huang, W. Zou, and P. Liu. Finding Unknown
Malice in 10 Seconds: Mass Vetting for New Threats at
the Google-Play Scale. In USENIX Security, pages
659–674, aug. 2015.

[38] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
An Improved Algorithm for Matching Large Graphs. In
GbR, 2001.

[39] J. Crussell, C. Gibler, and H. Chen. Attack of the
Clones: Detecting Cloned Applications on Android
Markets. In ESORICS, volume 7459, pages 37–54, 2012.

[40] M. De Wulf, L. Doyen, T. Henzinger, and J.-F. Raskin.
Antichains: A New Algorithm for Checking
Universality of Finite Automata. In CAV, volume 4144,
pages 17–30, 2006.

[41] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In OSDI, pages 1–6,
Berkeley, CA, USA, 2010.

[42] D.-F. Feng and R. Doolittle. Progressive Sequence
Alignment as a Prerequisitetto Correct Phylogenetic
Trees. Journal of Molecular Evolution, 25(4):351–360,
1987.

[43] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based Detection of Android Malware
Through Static Analysis. In FSE, pages 576–587, 2014.

[44] Gabel, Mark and Jiang, Lingxiao and Su, Zhendong.
Scalable Detection of Semantic Clones. In ICSE, pages
321–330, 2008.

[45] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic Detection of Capability Leaks in Stock
Android Smartphones. In NDSS, 2012.

[46] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and
D. Song. Juxtapp: A Scalable System for Detecting
Code Reuse Among Android Applications. In DIMVA,
pages 62–81, 2013.

316

http://www.appsapk.com/
http://www.androiddrawer.com/
http://www.anzhi.com/
http://f-droid.org
http://play.google.com/store/
http://slideme.org/
http://www.apkmirror.com/
http://mm.10086.cn/
http://www.coolapk.com/
http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://www.eoemarket.com/
http://app.flyme.cn/
http://www.getjar.com/
http://apk.gfan.com/
http://appstore.huawei.com/
http://app.mi.com/
http://m.163.com/android/
https://sites.google.com/site/droidsmat2015/
https://www.virustotal.com
http://www.wandoujia.com/apps/
http://www.appbrain.com/stats/libraries

[47] F. Harary and R. Norman. Some Properties of Line
Digraphs. Rendiconti del Circolo Matematico di
Palermo, 9(2):161–168, 1960.

[48] IDC. Android and iOS Squeeze the Competition,
Swelling to 96.3% of the Smartphone Operating System
Market for Both 4Q14 and CY14, According to IDC .
http://www.idc.com/getdoc.jsp?containerId=
prUS25450615, 2015. [Online; accessed 28-Feb-2015].

[49] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: scalable and accurate tree-based detection
of code clones. In ICSE, pages 96–105, 2007.

[50] X. Jiang. Security Alert: New Sophisticated Android
Malware DroidKungFu Found in Alternative Chinese
App Markets. http:
//www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html,
2011. [Online; accessed 13-Dec-2014].

[51] I. Keivanloo, F. Zhang, and Y. Zou. Threshold-free
Code Clone Detection for a Large-scale Heterogeneous
Java Repository. In SANER, pages 201–210, 2015.

[52] M. Labs. Threats Predictions. Technical report, 2015.

[53] E. Lafortune. ProGuard.
http://proguard.sourceforge.net/, 2015.

[54] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao. Detecting Differences Across Multiple
Instances of Code Clones. In ICSE, pages 164–174,
2014.

[55] G. Meng, Y. Liu, J. Zhang, A. Pokluda, and
R. Boutaba. Collaborative Security: A Survey and
Taxonomy. ACM Computing Surveys, 2015.

[56] A. Mishne, S. Shoham, and E. Yahav. Typestate-based
Semantic Code Search over Partial Programs. In
OOPSLA, pages 997–1016, 2012.

[57] S. Oberoi, W. Song, and A. M. Youssef. AndroSAT:
Security Analysis Tool for Android Applications. In
SecureWare, 2014.

[58] N. Peiravian and X. Zhu. Machine Learning for
Android Malware Detection Using Permission and API
Calls. In ICTAI, pages 300–305, 2013.

[59] H. Peleg, S. Shoham, E. Yahav, and H. Yang. Symbolic
Automata for Static Specification Mining. In LNCS,
volume 7935, pages 63–83. Springer Berlin Heidelberg,
2013.

[60] M. D. Preda, R. Giacobazzi, A. Lakhotia, and
I. Mastroeni. Abstract Symbolic Automata: Mixed
Syntactic/Semantic Similarity Analysis of Executables.
In POPL, pages 329–341, 2015.

[61] V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon:
Evaluating Android Anti-malware Against

Transformation Attacks. In AsiaCCS, pages 329–334,
2013.

[62] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro.
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors. In NDSS, 2015.

[63] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java Bytecode
Optimization Framework. In CASCON, pages 13–,
1999.

[64] H. Wang, Y. Guo, Z. Ma, and X. Chen. WuKong: A
Scalable and Accurate Two-Phase Approach to Android
App Clone Detection. In ISSTA, pages 71–82, 2015.

[65] T. Wang, S. Song, J. Sun, Y. Liu, J. Dong, X. Wang,
and S. Li. More Anti-chain Based Refinement Checking.
In ICFEM, volume 7635, pages 364–380, 2012.

[66] H. Xiao, J. Sun, Y. Liu, S.-W. Lin, and C. Sun. TzuYu:
Learning Stateful Typestates. In ASE, pages 432–442,
2013.

[67] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras.
DroidMiner: Automated Mining and Characterization
of Fine-grained Malicious Behaviors in Android
Applications. In ESORICS, volume 8712, pages
163–182. Springer International Publishing, 2014.

[68] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and
W. Enck. AppContext: Differentiating Malicious and
Benign Mobile App Behavior Under Contexts. In ICSE,
2014.

[69] M. Zhang, Y. Duan, H. Yin, and Z. Zhao.
Semantics-Aware Android Malware Classification Using
Weighted Contextual API Dependency Graphs. In CCS,
Scottsdale, AZ, November 2014.

[70] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,
X. S. Wang, and B. Zang. Vetting Undesirable
Behaviors in Android Apps with Permission Use
Analysis. In CCS, pages 611–622, 2013.

[71] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, Scalable Detection of “Piggybacked”Mobile
Applications. In CODASPY, pages 185–196, 2013.

[72] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
Repackaged Smartphone Applications in Third-party
Android Marketplaces. In CODASPY, pages 317–326,
2012.

[73] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In IEEE S&P, pages
95–109, 2012.

[74] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS,
2012.

317

http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://proguard.sourceforge.net/

	Introduction
	Related Work
	Modelling Android Malware
	The SMART Framework
	Learning Malicious Behaviors
	Bytecode Clone Detection
	Bytecode Differencing
	Semantic Model Construction
	DSA Construction
	Object-based Action Extraction

	Malware Detection and Classification
	Machine Learning Based Detection
	DSA based Detection and Classification

	Evaluation
	RQ1: Evaluation of the Semantic Model
	RQ2: Malware Detection based on ML
	RQ3: Evaluation on Real World Apps
	RQ4: Resilience to Malware Variants
	RQ5: Scalability & Efficiency

	Discussion
	Conclusion
	Acknowledgments
	References

