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a b s t r a c t 

Third-party library (TPL) detection in Android has been a hot topic to security researchers 

for a long time. A precise yet scalable detection of TPLs in applications can greatly facili- 

tate other security activities such as TPL integrity checking, malware detection, and privacy 

leakage detection. Since TPLs of specific versions may exhibit their own security issues, the 

identification of TPL as well as its concrete version, can help assess the security of Android 

APPs. However in reality, existing approaches of TPL detection suffer from low efficiency 

for their detection algorithm to impracticable and low accuracy due to insufficient analy- 

sis data, inappropriate features, or the disturbance from code obfuscation, shrinkage, and 

optimization. 

In this paper, we present an automated approach, named PanGuard , to detect TPLs from 

an enormous number of Android APPs. We propose a novel combination of features includ- 

ing both structural and content information for packages in APPs to characterize TPLs. In 

order to address the difficulties caused by code obfuscation, shrinkage, and optimization, 

we identify the invariants that are unchanged during mutation, separate TPLs from the pri- 

mary code in APPs, and use these invariants to determine the contained TPLs as well as 

their versions. The extensive experiments show that PanGuard achieves a high accuracy 

and scalability simultaneously in TPL detection. In order to accommodate to optimized TPL 

detection, which has not been mentioned by previous work, we adopt set analysis, which 

speed up the detection as a side effect. 

PanGuard is implemented and applied on an industrial edge computing platform, and 

powers the identification of TPL. Beside fast detection algorithm, the edge computing de- 

ployment architecture make the detection scalable to real-time detection on a large volume 

of emerging APPs. Based on the detection results from millions of Android APPs, we suc- 
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cessfully identify over 800 TPLs with 12 versions on average. By investigating the differences 

amongst these versions, we identify over 10 security issues in TPLs, and shed light on the 

significance of TPL detection with the caused harmful impacts on the Android ecosystem. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

obile application development is undergoing a significant 
evolution. Functionalities of one APP are decoupled and 

odularized for code reuse and collaborative development,
hich leads to a burgeoning increase of third-party libraries 

TPLs). According to the statistics by AppBrain 

2 , there are 400 
PLs providing ample functionalities, such as advertisement,
ame engines, and social network integration. These TPLs are 
idely deployed and reused in Android APPs. WuKong ( Wang 

t al., 2015 ) states that TPLs have taken more than 60% of code
n Android APPs, and they contribute 41% of APP code as re- 
orted in Li et al. (2016) . Therefore, TPLs have prominently fa- 
ilitated the development of Android APPs. 

The use of TPL is a double-edged sword. In particular, the 
ecurity of TPL has raised an increasing attention recently.
n particular, during the high popularity of TPL, a vulnera- 
le TPL may make thousands of APPs in the risk. According 
o a report released by PanguTeam, a severe vulnerability in 

PL was found to widely exist in Tencent family APPs includ- 
ng Tencent Browser, QQ Hotspot, which can lead to unautho- 
ized sensitive data access or application setup ( Pangu, 2017b ).
herefore, there is a large body of recent studies on TPL de- 

ection ( Backes et al., 2016; Li et al., 2017; Ma et al., 2016; 
arayanan et al., 2014 ) and security analysis of TPLs ( Chen 

t al., 2016a; Liu et al., 2014; Meng et al., 2016; Rastogi et al.,
016 ). 

However, it still faces the following challenges to identify 
PLs in Android Applications. Firstly, the hand-crafted am- 
iguous code by attackers is usually mingled with the TPL 
ode, which makes it easily escape the security inspection 

nd distort the integrity of TPL. Additionally, the vulnerable 
PLs or a specific vulnerable TPL version carried out by an 

PP make the APP in a fragile stat. Since most original TPLs 
r their historical version is unavailable for downloading, we 
se historical collected APP to build TPL corpus. With a large 
olume APPs in hand, how to distinguish the TPL code from 

he APPs remains the first challenge. Secondly, obfuscation,
hrinkage, and optimization are widely performed on TPLs 
hat impede the TPL detection. For instance, ProGuard , which 

s able to obfuscate, shrink, and optimize code, is observed to 
eing applied on 23.22% APPs. Although a handful of studies 
ropose approaches ( Backes et al., 2016; Ma et al., 2016 ) that 
re resilient to obfuscation, they fail to consider the impact by 
hrinkage and optimization to code; Lastly but not least, there 
re around 1,300 new APPs and their integrated TPLs emerg- 
ng per day ( Dogtiev, 2017 ). This introduces a serious scalability 
ssue especially when millions of detection instances should 

e supported. Therefore, an automated tool is demanding to 
dentify TPLs in an accurate and scalable manner. 
2 https://www.appbrain.com/stats/libraries y
To overcome the above challenges, we propose the ap- 
roach PanGuard which has been integrated into the online 
PP analysis platform Janus 3 . To make the proposed archi- 

ecture more scalable, we adopt edge computing architecture 
o deploy our TPL detecting tool. Each TPL is depict as bit vec-
ors, which reduce the bandwidth requirement for deploying 
eature from cloud to edge and vice versa. On the edge side,
olicy for skip analyzing and the checking algorithm, namely 
et analysis, bit vector operation in practice, ensuring the real 
ime TPL detection. In addition to the novel edge-assistant ar- 
hitecture, the proposed PanGuard has addressed the techni- 
al challenges from the following aspects. 

Firstly, to build TPL corpus, we propose a novel signature 
o depict the characteristics of TPLs, including both structural 
nd content information. By recursively traversing the struc- 
ure of packages in TPLs, and then computing their hash val- 
es, we obtain a signature for each node of the tree-like pack- 
ge. The signature demonstrates the hierarchy and content 
rom this node, and is robust against literal changes (e.g., op- 
imization) to TPLs. Therefore, the hash values serve to depict 
he concrete versions of TPLs. We apply our approach on a col- 
ected large dataset with 9,049,323 APPs to build the TPL cor- 
us. The enormousness of our dataset is able to minimize the 
isturbance (e.g., a rare TPL variance) within TPLs, and makes 
he detection more accurate. 

Secondly, to handle the obfuscation issue, we conduct a 
omprehensive investigation on “mutated” (i.e., obfuscated,
hrunk, or optimized) TPLs mainly by ProGuard . It is found 

hat ProGuard removes unused classes, fields, methods in its 
hrinkage stage or changes the modifier of field or method,
ptimizes the code sequence, evaluates constant values in 

dvance, propagates constant values to callee, etc. in its op- 
imization stage, and attributes to the original code. These 
hanges blur the boundaries between the primary code and 

PL, which makes the extraction of TPLs difficult. Therefore,
e employ a decoupling algorithm to separate TPLs from the 
rimary code in advance. Then, we identify invariants that are 
table during the mutation, for example, stable Android SDK 

PI invoked by TPLs. Stable Android SDK API are those that 
uild the basis of functionalities of TPLs. These APIs are de- 
rived and serve as a distinguishing feature to depict the mu- 
ated TPLs. 

Lastly, to make the proposed architecture more scalable,
e develop an off-the-shelf tool named PanGuard , which in- 

egrates all algorithms of TPL detection in Section 2 . Pan- 
uard generates features from APPs automatically, and per- 

orms a feature set matching algorithm to identify TPLs. Pan- 
uard is also robust against multiple mutations (e.g., obfus- 
ation, shrinkage, and optimization) to original TPLs. So far,
anGuard have analyzed over one million Android APPs, and 
3 Janus ( http://www.appscan.io ), a large-scale mobile APP anal- 
sis platform released by Pangu Team in April 2017. 

https://www.appbrain.com/stats/libraries
http://www.appscan.io
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identified 800 TPLs with 9623 versions. Compared to other
state-of-the-art tools of TPL detection. Moreover, by applying
PanGuard to a real case, we find a buggy version of a TPL which
is previously unknown to public and that the buggy version
is integrated by over 13,000 APPs; even the APP enclosing the
buggy TPL is shrunk and optimized by ProGuard , our tool can
still detect them successfully. 

We establishes an online APP analysis platform Janus ,
which has collected millions of Android APPs. In advance of
analyzing Android APPs, Janus needs to identify and thereby
eliminates integrated TPLs with the purpose of raising the ac-
curacy of detection. PanGuard is a part of Janus which is re-
sponsible for identifying TPLs. TPL identification can vastly re-
duce storage on Janus since we only need to reserve a copy of
the meta-data of a TPL for now. Since Janus has integrated an
online interactive analysis environment Akana ( Pangu, 2017a ).
This program analysis tool is computationally intensive and
storage consuming. Fortunately, PanGuard has drastically re-
duced the pressure of storage and computation. In addition,
by filtering out TPLs identified by PanGuard , our product Janus
has worked more efficiently and effectively in malware detec-
tion and vulnerability analysis. 

In summary, our contributions are listed as follows: 

• We present an edge-assistant TPL detection architecture.
Edge nodes in this architecture are responsible for TPL de-
tection and cloud in this architecture is mainly responsible
for TPL signature generation. On top of the edge computing
architecture, our work is scalable to real time TPL detection
for the unprecedentedly Android APP. 

• We conduct a systematical and thorough study of fac-
tors that disturb the TPL detection, including obfuscation,
shrinkage, and optimization. Especially for the optimiza-
tion factor, which has never been mentioned by previous
work. Our study discloses that 23.22% of TPLs have lever-
aged these factors. Among these TPLs, about one third of
them cannot be detected by previous work for they are pro-
cessed by optimization. These results can help to improve
TPL detection algorithms. 

• We propose an accurate and scalable approach to detect
TPLs which is adapted to mutation introduced by Pro-
Guard. (e.g., obfuscation, shrinkage, and optimization). In
addition, we develop an automated tool, PanGuard , to an-
alyze the TPLs in APPs in our data set. The experimental re-
sults show that PanGuard can find over 10 vulnerable TPLs.

2. Background of third-party library detection 

Third-party library (TPL) detection is to detect third party
libraries employed by Android APPs. The current detec-
tion methodology can mainly be classified into four cate-
gories: string-based, token-based, tree-based, and semantics-
based ( Jiang et al., 2007; Roy and Cordy, 2007; Roy et al., 2009 ).
However, they are computationally insufficient when an APP
is processed by ProGuard . To ease the presentation, we intro-
duce the following definitions. 

Definition 2.1 (Original TPL) . An off-the-shelf TPL used by an
APP, which has not been processed by ProGuard with any
modification. In this case, the embedded TPL remains the
same as the off-the-shelf TPL. 

Definition 2.2 (Obfuscated TPL) . An off-the-shelf TPL used by
an APP, which is processed by ProGuard using only obfusca-
tion. In this case, the TPL in the APP is also obfuscated by Pro-
Guard . 

Definition 2.3 (Shrunk TPL) . An off-the-shelf TPL used by an
APP, which is processed by ProGuard using only shrinkage. In
this case, the TPL in the APP is also shrunk by ProGuard . 

Definition 2.4 (Optimized TPL) . An off-the-shelf TPL used by
an APP, which is processed by ProGuard using only optimiza-
tion. In this case, the TPL in the APP is also optimized by Pro-
Guard . 

Definition 2.5 (Package Stem) . “Package Stem” is part of a
fully qualified name ( Wikipedia, 2017 ), which is presented as
a namespace . Class files in the “Package Stem” covers the most
part of a TPL, which means that the “Package Stem” is short
enough to encapsulate most of the class files in a TPL. Mean-
while, the namespace can be extended to detect another ver-
sion of a TPL and the features associated with “Package Stem”
are useful in detection, which means that the “Package Stem”
should be long enough to avoid conflicts. 

Definition 2.6 (Package Dependency Graph (PkgDG)) . Package
Dependency Graph, abbreviated to PkgDG, shows dependency
between packages, fields, and methods that contribute to the
graph. 

2.1. A Study of ProGuard 

ProGuard is an officially recommended tool for developers to
shrink their APPs in practice ( Google, 2017 ). Apart from shrink-
age, ProGuard can also perform other functions–optimization,
obfuscation, and verification to Android projects. The preva-
lent usage of ProGuard introduces challenges to TPL detec-
tion. 

2.1.1. The Obfuscation of ProGuard 

The obfuscation of ProGuard renames the classes, fields, and
methods by using short and meaningless names, and it is pre-
vailing in the Android APP development. Previously, Duet ( Hu
et al., 2014 ) claims that over 80% of TPLs in 100,000 Google Play
APPs are indeed used without any modification. Our evalua-
tion verified this data in Section 4.2.4 . 

2.1.2. The shrinkage of ProGuard 

Since a TPL provides functional interface, of which a sub-
set is available to developers, the shrinkage of ProGuard will
tremendously reduce the storage space of an APP (see break-
downs of shrunk TPL by ProGuard in Table 1 ). The shrinkage
of ProGuard mainly relies on detecting and removing unused
classes, fields, methods, and attributes. In this scenario, the
corpus built for original or obfuscated TPLs cannot be used to
detect shrunk TPL directly. Much research uses subgraph iso-
morphism ( Fan et al., 2017 ) and intersection detection ( Backes
et al., 2016 ) to identify shrunk TPLs. 



260 c o m p u t e r s  &  s e c u r i t y  8 0  ( 2 0 1 9 )  2 5 7 – 2 7 2  

Listing 1 – Original code for sending a simple mail through 

“Apache Commons Email”. 
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.1.3. The Optimization of ProGuard 

o date, the released version of ProGuard ranges from 1.0 to 
.3.3, with 47 versions in total. Since version 3.0.7, ProGuard 

as provided a function to optimize an APP at the bytecode 
evel within and across methods. Specifically, ProGuard uses 
echniques, such as control flow analysis, data flow analysis,
artial evaluation, static single assignment, global value num- 
ering, and liveness analysis to optimize APPs. To our knowl- 
dge, no previous work has examined the optimization prob- 
em in TPL detection, which we detail as follows. 

In the optimization step, ProGuard analyzes and optimizes 
he bytecode of methods. The latest version, ProGuard 5.3.3,
Listing 2 – ProGuard Inlining code from “Ap
rovides 17 types of optimizations, including modifier chang- 
ng, constant propagation, inlining, peephole optimizations,
tc. The most prominent peephole optimization contains over 
00 peephole optimizations, say pre-concatenating two con- 
rete strings. 

The optimization introduces complexity for TPL identifi- 
ation. For example, user space may intrude the TPL code 
hrough constant propagation (caller → callee); TPL code may 
ntrude the user space by inlining (callee → caller). To take a 
ontrolled study of the optimization problem, we turn off the 
bfuscation option of ProGuard . Listing 1 and 2 are two ex- 
mples that show code in TPL is inlined to user space by opti-
ization of ProGuard . We conclude that optimization gener- 

lly obscures the boundary between user space and TPL. 
The optimization introduces more complexity if different 

ersions of ProGuard are used for APPs. To continue with the 
forementioned inlining, in ProGuard 3.0.7, the first appear- 
nce of inlining declares simple methods of getters and set- 
ers. However, in ProGuard 5.3.3, the inlining supports inlined 

onstant fields, method parameters, return values, or inline 
ethods that are short or only called once. TPL optimization 

y various versions of ProGuard turns out different outcomes.
urthermore, different optimization adopts different search 

lgorithms (caller → callee / callee → caller), for which Pro- 
uard optimizes APPs randomly. In this case, different TPLs 
an be issued by the same version of ProGuard . 

In order to clarify the optimization problem, we take a 
ystematic study of the effect of optimization of the current 
revalent TPLs, by released versions of ProGuard updated 

rom 3.0.7 to version 5.3.3. Table 3 shows how optimization 

istorts commonly-used features and defeats most practices 
f state-of-the-art TPL detection. Specifically, we find that the 
final” method is the most prevalent and prominent signature 
or ProGuard optimization after an insight study of the his- 
ache Commons Email” to user space. 
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Table 1 – TPL shrunk by ProGuard. 

TPL TPL Version # classes # classes left # fields # fields left # methods # methods left 

Amazon s3 2.4.3 6945 538 (7.75%) 15525 1426 (9.19%) 50585 2895 (5.72%) 
Amazon s3 ∗ 2.4.3 1244 499 (40.11%) 3384 1270 (37.53%) 8703 2572 (29.55%) 
Apache Email 1.5 349 232 (66.48%) 1253 711 (56.74%) 2817 1801 (63.93%) 
Apache Ftp 3.6 195 57 (29.23%) 1270 207 (16.30%) 1815 313 (17.25%) 
Gson 2.8.1 186 160 (86.02%) 421 290 (68.88%) 1027 771 (75.07%) 
Flurry Analytics 7.2.3 338 328 (97.04%) 940 927 (98.62%) 1445 1435 (99.31%) 
OkHttp 2.7.5 234 182 (77.78%) 992 724 (72.98%) 2187 1416 (64.75%) 
Nine Old Androids 2.4.0 145 133 (91.72%) 474 339 (71.52%) 930 688 (73.98%) 
Google Cloud Messaging 5 4132 120 (2.90%) 10398 424 (4.08%) 26118 673 (2.58%) 
Picasso 2.5.2 92 72 (78.26%) 352 247 (70.17%) 522 362 (69.35%) 
Http Client 4.5.3 732 382 (52.19%) 1909 698 (36.56%) 4707 2501 (43.57%) 
InApplication Billing 5 320 28 (8.75%) 853 78 (9.14%) 2449 118 (4.82%) 
Means 53.19% 45.98% 45.82% 

Standard Deviation 0.33 0.30 0.32 

1 Data issued from a modification of ProGuard 5.3.3. To perform this task, we prefer using the TPL’s officially-recommended configuration 
for ProGuard . 2 Each sample is fully functional. For example, “Apache Ftp” uses upload and download function. 3 When using ProGuard , we 
only use code shrinkage, which means the result derives from only one iteration. 4 By observation, intersection detection analysis does not 
work for most of the TPL shrunk by ProGuard . 

Table 2 – Previous work on TPL detection. 

Previous work Methodology Can detect 
original TPL 

Can detect 
obfuscated TPL 

Can detect 
shrunk TPL 

Can detect 
optimized TPL 

AdDetect Narayanan et al. 
(2014) 

Machine learning � � × ×

LibRadar Ma et al. (2016) Use system API which is 
resilient to obfuscation 

� � × ×

LibScout Backes et al. (2016) Similarity analysis based on 
features which is resilient to 
obfuscation 

� � × ×

LibD Li et al. (2017) Use opcode which is resilient 
to obfuscation 

� � × ×

1 LibScout ( Backes et al., 2016 ) use profile matching to get the candidate similar TPLs, which is likely to accommodate to shrunk TPL detection. 
But statistical data in Table 1 shows that about 53.19% classes in TPLs are left by shrinking of ProGuard. Moreover, for each left class, lots of 
methods in the class are removed which will distort the profile of the class. All these make it’s algorithm does not work on shrunk TPL 
detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Workflow of ProGuard 

 

 

 

 

 

 

 

 

 

 

 

torical of ProGuard. To avoid the fact that the method modifier
is already defined as “final”, which will lead to false positives,
we collect all methods which are not finalized in the historical
“Android Support Repository”. Then, we check if an APP con-
tains these methods and verify their modifiers. If the modifier
is converted to “final”, then the APP is optimized. 

Because optimization distorts commonly used features for
TPL detection and optimized APPs take up a large portion of
APPs, a more fine-grained TPL detection approach is desired.
To make the requirement clear, previous work and their abili-
ties are summarized in Table 2 . 

2.2. The Use of ProGuard 

In this subsection, we attempt to show that customizing the
use of ProGuard will complicate the TPL detection. 

The actual workflow of ProGuard is shown in Fig. 1 .
For ProGuard , shrinkage, optimization, and obfuscation are
default options for processing class files ( GuardSquare,
2017 ). Along the workflow pipeline, the number of iter-
ation of shrinkage and optimization is controlled by “-
optimizationpasses ” option. If this argument is specified, Pro-
Guard keeps optimizing or shrinking an APP until the loop-
bound is reached or no optimization can be applied to the
class file. 

From the perspective of APP developing environment, the
most-recent configuration file (such as “project.properties” file
in eclipse) is generated by “Android Tool”, which supplies a
standard configuration for developers when using ProGuard .
For optimization, it turns off the option by default (with option
“-dontoptimize ”). 

From the perspective of a developer, the customized use of
ProGuard can trigger different consequences even if the TPL
is processed by the same ProGuard . Again, in the example of
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Table 3 – TPL optimized by ProGuard. 
TPL Amazon 

s3 
Amazon 
s3 ∗

Apache 
Email 

Apache 
Ftp 

Gson Flurry 
Analytics 

OkHttp Nine Old 
Androids 

Google 
Cloud 
Messaging 

Picasso Http 
Client 

In- 
Application 
Billing 

TPL Version 2.4.3 2.4.3 1.5 3.6 2.8.1 7.2.3 2.7.5 2.4.0 5 2.5.2 4.5.3 5 
# optimize iterations 7 7 3 5 5 2 6 4 4 3 4 4 
# finalized classes 27 27 13 32 32 1 48 100 60 38 198 19 
# unboxed enum classes 0 0 0 0 0 0 1 0 0 1 2 0 
# privatized methods 313 206 17 26 109 0 55 52 81 24 235 14 
# staticized methods 111 106 7 9 71 0 23 42 35 4 70 1 
# finalized methods 1410 1234 137 160 399 1 646 359 360 167 987 64 
# removed method 
parameters 

138 132 0 2 2 0 30 0 51 10 32 1 

# inlined constant 
parameters 

26 26 4 5 7 0 22 24 7 0 32 5 

# inlined constant return 
values 

10 10 0 1 0 0 6 0 6 0 8 1 

# inlined short method 
calls 

2697 1364 26 168 142 0 553 253 48 96 402 17 

# inlined unique method 
calls 

639 632 32 83 122 0 342 113 170 91 280 20 

# inlined tail recursion 
calls 

0 0 0 0 5 0 2 1 2 0 0 0 

# merged code blocks 6 6 4 1 2 0 14 0 5 3 5 0 
# variable peephole 
optimizations 

4165 2681 678 376 473 2 1293 651 412 287 1378 67 

# field peephole 
optimizations 

6 5 3 2 1 0 1 1 3 1 1 0 

# branch peephole 
optimizations 

657 644 223 64 180 0 294 66 128 84 263 13 

# string peephole 
optimizations 

480 318 5 28 82 0 179 2 139 45 205 0 

# simplified instructions 202 136 30 26 21 2 210 73 40 12 138 26 
# removed instructions 868 649 220 96 132 4 1016 80 481 83 472 65 
# removed local variables 158 118 13 23 40 0 53 20 33 13 58 1 
# removed exception 
blocks 

31 31 9 6 1 0 12 0 4 3 23 0 

# optimized local variable 
frames 

645 549 288 87 197 1 331 192 177 86 416 37 

1 Data issued from a modification of ProGuard 5.3.3. 2 The default configuration for using ProGuard (proguard-android-optimize.txt) turns 
off “vertically merged classes”, “horizontally merged classes”, “removed write-only fields”, “privatized fields”, “inlined constant fields”, “arith- 
metic peephole optimizations”, and “cast peephole optimizations” options, result for these options are not listed in the table. 3 APPs will not 
turn to be stable until “optimize iterations”. Other data comes from the first iteration of optimization. 4 Optimization is performed based on 
the results shown in Table 1 . The overlapping of shrinkage and optimization tremendously change the APP. 
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nlining, the default strategy for inlining a short method is to 
se the code block of the size no greater than 8. However, a 
eveloper can use his own strategy by specifying the argument 
f “maximum.inlined.code.length ” to expand or shrink the code 
lock for inlining. 

In summary, different versions of ProGuard and various 
sage of ProGuard lead TPLs inconsistent, which is extremely 
ard to precisely predict the final result of a TPL processed 

y ProGuard , especially when the TPL is optimized. Because 
roGuard is pervasively used for APP developing, it is highly 
esirable to establish new TPL corpus from the scratch and in- 
roduce stable features for TPL identification, ultimately ren- 
ering mutated TPLs to be readable. 

. Our approach and implementation 

.1. System overview 

side from TPL detection methodology, an architecture is re- 
uired to ensure the feasibly of TPL detection. In order to de- 
loy TPL checking tool to protect end-user in real time, and 

romise performance benefits such as low latency and quick 
esponse time for customer, we make a profound survey on 

he bottleneck of real-world TPL detection in advance. 
The data for TPL checking is coming from geographically 

istributed organizations, acquiring from the traffic flow. A 

igh volume data is generated each day by observation. For 
xample, about eighty millions URLs point to APP are discov- 
red each day in CERNET network. The explosive prolifera- 
ion of APPs for detection requires high bandwidth to trans- 

it and becoming a big computing burden for our cloud. Since 
he pure cloud computing can’t be competent for TPL detec- 
ion for the unpredictable latency, bandwidth bottlenecks, an 

laborately designed architecture is required for leverage re- 
ources for computation, networking, and storage. 

Considering the geographically distributed organizations 
here data is generated have the ability to equip with suf- 
cient computing resource, we propose an edge computing 
rchitecture which provide elastic resources at the edge of 
he network. This computing paradigm collaboratively pro- 
ide elastic computation, storage and communication for TPL 
etection. Data generated and mainly analyzed at edge, which 

educe the delay of data analytics and decrease the cost of 
ata transmission and storage. 
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Fig. 2 – Edge computing architecture for real time TPL 
detection. 

Table 4 – Janus configuration. 

Cluster Node Configuration 

Hadoop 2 masters 4 cores CPU, 32 gb memory, 80 gb disk 
26 slaves 4 cores CPU, 12 gb memory, 8 tb disk 

Elastic Search 3 masters 4 cores CPU, 16 gb memory, 500 gb disk 
172 slaves 4 cores CPU, 8 gb memory, 500 gb disk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our TPL checking tool is now providing service for CETC,
China Unicom, etc. The customer is geographically near to
the spot where data is generated, and as Fig. 2 depicted, edge
nodes are maintained by these organizations (customers).
Meanwhile, some tasks, such as TPL signature exchanging,
might benefit from the cloud running in the back-end, and the
cloud is owned and maintained by us. 

Cloud of this architecture is the Hadoop cluster of our
Janus platform, which is located in the cloud service provider
UCloud ( Ucloud Co., 2017 ). Cloud build TPL corpus and ex-
change signature between edge. The Janus configuration is
shown in Table 4 . 

Edge nodes are geographically distributed, and logically de-
centralized in that they are maintained by different organiza-
tions. The organizations have the advantage to collect APPs
and the localized edge overcome the high bandwidth required
for transmitting APPs from different channels to our cloud. 

To coordinate different entities in the edge computing ar-
chitecture and providing a high performance and effective
system, we define policies for the system. They are synchro-
nization policy, locking policy, and migration policy. (1) The
synchronization policy can reduce resources for computation.
For example, a pre-checked APP should not be checked again.
In order to achieve this goal, hash or signature for the pre-
checked APP should be shared between the edge nodes. The
policy enforces data items synchronization at a threshold of
100. That is, when the accumulated new APPs reach 100, the
enforced data synchronization is started. (2) The locking pol-
icy guarantees the integrity of data. If the edge generated data
and synchronized data from other edge arrived at the same
time, the unlocked write operation will distort the data col-
lection in the edge node. (3) The migration policy can improve
the overall system performance. In practice, edge nodes in our
architecture are commonly equipped with low performance
servers. To ensure the quick response time even when com-
putation resource on the edge node has been exhausted, we
offload the computation task to the back-end cloud. 

3.2. Establishing the TPL Corpus 

In this subsection, we try to establish the TPL corpus, which is
indexed as a hash token, in order to detect both original or mu-
tated (i.e., obfuscated, shrunk and optimized) TPLs. The built-
in corpus is resilient against the obfuscation of ProGuard . 

We leverage “Big Code” to establish the corpus, based on
the assumption that a TPL is used by many APPs. Apart from
traditional work that uses qualified names as a feature of a
TPL, instead, we use the combination of Android SDK API and
string hashing as our features. After setting up the tree-based
feature, we intentionally probe the most outstanding qualified
name, known as “Package Stem”, to identify other versions of
the TPL and related hashing. The built-in corpus serves as a
benchmark dataset for detecting original or obfuscated TPLs
directly. The pipeline of establishing TPL corpus is illustrated
in Fig. 3 . 

3.2.1. Building the hash-tree package 
We use Android SDK APIs ( Ma et al., 2016 ) and strings to de-
rive the package-level feature, because Android SDK APIs and
strings remain stable even if an APP is obfuscated by Pro-
Guard . The Android package is structured as a hierarchical
tree. In the tree, a node is a folder and a leaf is a class file.
We apply recursive depth-first search (DFS) algorithm to gen-
erate the hash tree, and then generate hash values based on
the child hash values, in the way that hash values preserve
the structural information of a TPL. Specifically, we do the
following: 

(i) For each leaf i , we generate a vector v i of the functions,
where each component encodes an Android SDK API. The
length of the vector v i is denoted l i = ‖ v i ‖ . We then hash v i and
output a hash value s 1 i = SHA − 256( v i ) ; we also hash ordered
strings str i and output another hash value s 2 i = SH A−256(st r i ) .
We then hash the ordered s 1 i and s 2 i , and generate the final
hash value s i = SHA − 256(s 1 i , s 

2 
i ) . 

(ii) For each non-leaf node i with child nodes i c , we simply
take in all ordered hash values of its child’s nodes s i c and out-
put s i = SHA − 256( s i c ) . Likewise, the length of the vector v i
equals to the length of the vector of its child’s nodes, denoted
l i = ‖ v i c ‖ . We say each hash value s i represents the signature of
each folder and l i represents the number of Android SDK APIs
used of its class file. Again, we still preserve the tree-based
structure, that is qualified name for each folder p i , given TPL.
Finally, we obtain the tuple 〈 s i , l i , p i , v i 〉 , for any node i . 

(iii) For each signature s i of each folder, we try to add up
all the APPs associated with s i . We then extend the tuple to
〈 s i , l i , p i , v i , a i 〉 , where a i is the number of APPs associated with
s i . The value of a i is largely fluctuated by different versions of
APPs containing commonly-used code, wherein each APP is
characterized by the qualified name and the signature s i . 
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Fig. 3 – Establishing TPL corpus. 
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.2.2. Tagging the TPL 
o accommodate more meta-information into the TPL corpus 
ith minimum human efforts, we tag the TPL as follows: 

(i) We apply breadth-first search (BFS) algorithm to probe 
he qualified name. The search depth is determined by the 
ize of p i for each node i . We prioritize the search by sorting 
 i in descending order, which guarantees us to pass the most 
opular TPL first. 

(ii) We then probe the “Package Stem” by moving forward 

ntil l i is changed or the current node i has multiple child 

odes. Note that lower-level features or signatures can be pol- 
uted by the mixture of TPLs. We de facto probe from the lower- 
evel of the hierarchical tree to the “Package Stem”. 

(iii) We build a dependency graph for the “Package Stem”
nd use NetworkX ( Hagberg et al., 2013 ) to identify cycles in 

he PkgDG, attempting to merge “Package Stem”. That is, a TPL 
s a mixture of completely distinct “Package Stem”. 

(iv) We tag the TPL manually, with the probed “Package 
tem”. We store the current representation as 〈 s i , p i , v i , d i 〉 for
 given TPL, where d i is the semantic description and p i is the 
ltimate “Package Stem” of the TPL. 

(v) We further extend to find other tuples by only consid- 
ring both p i and d i , regardless of s i and v i , then obtain a col-
ection of tuples 〈 s i , d i , v i 〉 , where s i is a signature associated
ith a specific version of a TPL. The derived representation of 

he TPL corpus serves as a benchmark dataset for detecting 
riginal or obfuscated TPLs directly. Note v i is the feature for 
etecting shrunk or optimized TPLs. 

To date, most polluted TPLs are sanitized by using cycle 
earch. Shrunk and optimized TPLs are sanitized by feature 
et matching. We successfully create a one-to-one mapping 
etween a hash value (or a feature set) and a specific TPL 
ersion. 

.3. Identifying shrunk or optimized TPLs 

ith the TPL corpus established in hand, we attempt to take a 
eep dive into how we use it for proposing our TPL detection,
here no previous research considers the effect of shrunk or 
ptimized TPLs in the wild. Recall that the shrinkage and op- 
imization of ProGuard introduce the complexity of TPL de- 
ection. In order to detect shrunk or optimized TPLs, we first 
ecouple an APP, and then use the stable generated feature to 

dentify the calibrated TPL. 

.3.1. Decoupling an APP 
ecause an APK file processed by ProGuard can be mixed up 

ith shrunk, optimized, obfuscated user space, the boundary 
etween these modules become obscure. In order to identify a 
PL within an APK file, we use module decoupling technique 

o divide the APK file into different modules. Inspired by Pig- 
yApp ( Zhou et al., 2013 ) and the follow-up work LibSift ( Soh
t al., 2016 ), we decouple APPs through the “Package Stem”
robing. 

Different from Section 3.2.2 , we probe the “Package Stem”
rom the second level of the package tree. Fig. 4 shows an anec-
otal example when we decouple an APP. In this case, a node 
epresents a module and a directed edge represents the de- 
endency between two modules. Direction of the edge helps 
s to find cycles between different modules (by the assump- 
ion that the TPL will not invoke each other). In the mean 

ime, if there is a cycle in the siblings, we stop decoupling 
nd take the current node as a “Package Stem” of this mod- 
le. The weight assigned to each edge is the degree of depen- 
encies between modules. The dependency between modules 

ncludes fields and method dependency. We present the mod- 
le decoupling technique used in Algorithm 1 . 

Algorithm 1: Decoupling an APP 

Input: Android package structure and metadata 
Input: Upper-threshold of PDG: U 

Output: Modules and their dependencies: M = ∅ 

foreach node i visited by recursive DFS do 
i c ← child’s nodes of node i ; 
w i c ← 

∑ 

PDG( i c ); 
if w i c > U then 

M ← M ∪ i c ; 
end 

else if cycle( i c i , i c j ) = True then 

M ← M ∪ i c ; 
end 

else 
continue; 

end 

end 

foreach ( m i , m j ), m i ∈ M, m j ∈ M do 
if cycle( m i , m j ) = True then 

M ← M - m i ; 
M ← M - m j ; 
M ← M ∪ m i j ; 

end 

end 

.3.2. Feature generation 

urrent research chooses to use parameter types, return 

ypes, constant strings, access modifiers, and instruction 

treams as features to detect TPL ( Backes et al., 2016; Bich- 
el et al., 2016; Zhou et al., 2015 ). However, the optimiza- 
ion of ProGuard changes the layout of TPL drastically 
see Fig. 3 ). This leads to the fact that the precise graph
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Fig. 4 – Building apackage dependency graph for an APP. 

(a) The original call graph of “com amazonaws regions/
RegionMetadataParser” class

(b) The result of shrinkage and optimization with one
iteration (n = 1 in Figure 1)

Fig. 5 – Inline optimization fails the call graph subgraph isomorphism to work on a class 
(“com/amazonaws/regions/RegionMetadataParser”) of a TPL. Some nodes, such as “m7471”, not invoked are removed by 

shrinkage. Since node “m7465” is invoked by only one time, ProGuard inlines this method to “m7469”, which fails 
subgraph isomorphism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detection does not scale well to optimized TPLs. As we
see from the anecdotal example shown in Fig. 5 , it indi-
cates that inlining renders subgraph isomorphism to fail
on class “com/amazonaws/regions/RegionMetadataParser”.
To continue with this APP, we show after one iteration of op-
timization by ProGuard , there are 465 classes left. By utilizing
NetworkX, we find 34 classes are not belong to subgraph iso-
morphism, 12 classes are timeout (20 seconds) for subgraph
isomorphism detection. Out of the 419 subgraph isomorphism
classes, 150 classes contain less than 3 nodes that have less
information, which makes subgraph isomorphism detection
unreasonable. In addition, data dependency and the entire de-
pendency graph for the APP are also affected by optimization.

Instead, we use the invocation of Android SDK APIs in TPLs.
These Android SDK APIs are not directly processed by Pro-
Guard and we find they are resistant to shrinkage and opti-
mization. Here, we emphasize that, on one hand, the kind of
invocation of an Android SDK API in the TPL may decay due to
either method inlining from TPL code to user space or method
removing through dead code elimination. On the other hand,
the number of the same invocation may expand by method
inlining from the callee to all callers within the same TPL. In
optimization scenario, this principle does not scales to string,
for a new string may appear by peephole optimization of Pro-
Guard (“a” + “b” will be replaced with “ab”). Subgraph Isomor-
phism perhaps works for identifying shrunk TPLs but not for
optimized TPLs. Because of these reasons, to facilitate scala-
bility, we instead use various types of Android SDK APIs with-
out considering the number of invocation for each Android
SDK API, to identify shrunk or optimized TPLs. 
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(a) TPL popularity (b) The distribution of TPL versions (c) The distribution of optimization

Fig. 6 – The distributions of TPLs 
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Table 5 – Qualified names of “Apache Http Client’.’ 

Path # detection 

Lorg/apache/http 87,544 
Lorg/apache/commons/httpclient 25,344 
La/a/a 3467 
Lcom/flurry/org/apache/http 896 
Lorg/a/b 689 
Lorg/a/a 518 
Lorg/apache 495 
Others 2161 

1 By using Reflector, class in “Lorg/apache/http” can be moved to 
“Lorg/apache/commons/httpclient”. 2 “Lorg/a/b” are detected be- 
cause they have the same s i within the TPL corpus. APPs turn off 
shrinkage and optimization options to make the same s i as the TPL 
corpus. 3 Hashing procedure ensures that the layout under each 
package is the same. 
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. Evaluation 

n this section, we evaluate the performance of PanGuard 

nd compare it with previous works. The APP ’s metadata 
s distilled and stored in the HBase of our edge computing 
rchitecture. 

.1. Bandwidth and computing requirement analysis 

n order to collect Android SDK API in an APP, we ex- 
ract method with “public” modifier from “android.jar” file 
f version android-22. There are 32,203 Android SDK APIs 
re extracted. Bit vector representation for each TPL takes 
026 bytes. To go further on shrinking the data usage for 
PL signature, we use sparse vector instead. For example, the 
ndroid SDK API used by different version of “Android Sup- 
ort V4” is ranging from 770 to 1805 with an average of 1107,
214 bytes on average is needed for a specific “Android Sup- 
ort V4” TPL version. Compared to other tree-based method 

hich maintain relation between node, our representation 

remendous reduced the bandwidth for feature distribution 

rom cloud to edge and the storage of edge. 
In order to detect TPL, feature is converted to bit vector on 

dge node and the comparison is a bit vector operation. Com- 
ared to other tree-based method for TPL identification with 

omplexity (exp((log n ) O (1) )), our comparison is constant com- 
lexity, say O(1). This is acceptable in edge for TPL checking. 

.2. The Distributions of TPLs 

.2.1. TPL popularity 
or feature v i matching that is not practical on a large dataset,
e do a measurement on the signature s i . The distribution of 
PLs in APPs is shown as Figure 6 (a). We find that TPLs in our
ataset are approximately 20% more than those in previous 
esearch ( Backes et al., 2016; Li et al., 2016 ). Taking as example
he TPL “Apache Http Client” as shown in Table 5 , we find that 
etecting TPLs by qualified name is not sufficient due to the 
se of Refactor in Java. Moreover, developers rarely process an 

PP by ProGuard using obfuscation alone. In fact, we show 

hat ProGuard outperforms LibRadar ( Ma et al., 2016 ) in the 
ase— If two signatures s i are the same for any node i , Pan-
uard not only ensures the same Android SDK API in these 
PLs, but also preserves the structural information of its chil- 
ren, leading to a lower false positive rate. 

.2.2. The distribution of raw TPL versions 
efore sanitization, each raw TPL version is shown in Fig. 6 (b).
trikingly, we find 1,428 unique hashes appearing in the raw 

PL “Android.support.v4 ”, while there are only 61 ver- 
ions of the officially-released one. We attribute this to the 
act that shrinkage and optimization of ProGuard largely con- 
ribute to the difference of the version numbers. 

.2.3. The distribution of sanitized TPL versions 
e try to merge raw TPL versions to sanitize ones produced 

y the approach shown in Section 3.3 . Simply put, if a path of
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Fig. 7 – TPL sanitization process. 

Table 6 – TPL edit distance. 

Distance between TPL signature Max Distance Min Distance Mean Standard Deviation 

Android.support.v7 VS. Google Mobile Service 1672 325 1009.99 206.70 
Android.support.v7 VS. Android.support.v4 1853 340 1252.77 299.13 
Android.support.v7 VS. Facebook SDK for Android 2278 318 1411.81 276.74 
Google Mobile Service VS. Android.support.v4 2031 141 1148.52 393.34 
Google Mobile Service VS. Facebook SDK for Android 1930 33 1030.26 273.94 
Android.support.v4 VS. Facebook SDK for Android 2507 140 1475.85 371.92 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 – ProGuard signature. 

“. ∗/a;- > . ∗” and “. ∗/b;- > . ∗”

 

 

 

 

 

 

a decoupled module of an APP matches the “Package Stem” of
a TPL, we then search cycles that contain this module. In most
cases, we regard that a TPL is polluted if the model is discov-
ered in the cycle, and then the related versions of this TPL will
be removed. This sanitization process is shown in Fig. 7 . For
the example of “Android.support.v4 ”, we show that about
64% of the APPs containing a raw version of a TPL is decoupled
successfully. Out of the successfully decoupled 80 samples, we
find that approximately 63% of them are in a cycle, which indi-
cates that this TPL is largely polluted by code injection. Finally,
we try to measure edit distance between two instances with re-
spect to different TPLs. As we see from Fig. 6 , the edit distance
between two TPLs is large enough, which indicates they are
remarkably distinguishable. 
4.2.4. The actual proportion of TPLs distorted by ProGuard 

We find that 5,948,438 out of 7,602,323 (78.25%) APPs hit the
following ProGuard signature (see Table 7 ). 

However, this data is a combination of ProGuard , pro-
cessed by TPL providers and APP developers. Since only the
developer processing can distort the TPL, we adopt Duet’s
term ( Hu et al., 2014 ) to separate the TPL processing into de-
veloper’s post-processing and provider’s post-processing. In
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Fig. 8 – Provider’s post-processing. 
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rder to make sure the actual fraction of developer’s post- 
rocessing, we use three methods to find developer’s code (pri- 
ary modules) of an APP. This measurement is performed on 

 collection of 4,795,627 APPs. We plot the results in Fig. 8 . The
rst column of Fig. 8 shows the code we check under “pack- 
ge” defined in “AndroidManifest.xml”, indicating that 15.36% 

PPs cannot be found any code under “package” approxi- 
ately. The second column of Fig. 8 shows that we shorten 

he length of “package” to 2. The third column of Fig. 8 shows 
hat path “MainActivity” resided are used to check the post- 
rocessing, indicating that using “MainActivity” as a clue to 
nd primary modules is more reasonable. The rightmost col- 
mn of Fig. 8 shows that approximately 23.22% APPs in our 
ataset are processed by ProGuard . 

By observation, when using ProGuard to process an APP,
evelopers always enable the obfuscation with shrinkage or 
ptimization options. This will drastically break the integrity 
f TPLs. Therefore, efforts on shrinkage or optimization of 
PLs problems cannot be emphasized more. 

.2.5. The distribution of optimization 

y using the checking method defined in Section 2.1 , we find 

hat out of a collection of 7,723,699 APPs, 5,353,359 APPs con- 
ain the invocation defined by “Android Support Repository”
nd 442,605 APPs (8.26%) are optimized. Synthesized with data 
n the previous section, we find that approximately 36% APPs 
re processed by optimization enabled within ProGuard . The 
ptimization of different categories is shown in Fig. 6 (c). As 
e can see from Fig. 6 (c), tool developers are more inclined to 
ptimize their code. 

Another measurement is performed on newly coming APPs 
or our Janus platform. 49,538 APPs out of 304,845 (16.25%) are 
ptimized. It is very likely to be a trend for developers to opti-
ize their code. 

.3. Detecting vulnerable TPL 

his work is performed on our cloud service to help devel- 
per to exclude vulnerable TPL. In order to verify the capabil- 

ty of PanGuard , we apply our tool to a real-world TPL “AliPay 
DK for Android”. The “AliPay SDK for Android”released by Ali- 
ay , which is one of the biggest third-party mobile and online 
ayment platforms in the world. Android developers integrate 
his TPL to provide online payment for customers. To evaluate 
ts efficiency, our task is performed on a collection of 1,004,498 
amples, most of which were collected before January 2016 by 
ur Janus platform. 

In the TPL corpus building stage, we collect 1031 signa- 
ures for this TPL. After the cycle search and feature set 

atching, we build a corpus with 199 versions of this TPL.
n the cycle search process, two signatures of the collec- 
ion are in a cycle of related TPLs. The instances integrated 

hese polluted TPLs are SHA − 1 : 9e1dab145cc524d0ad5e 
934510b1247f81be1dc and b9ce54e8e4e3a21dbe85c 
dc8814000db419b84f . After inspecting the code, we find 

hat the APP injects code to redirect the payment to their 
wn code, which leads to an integrity breakdown of this 
PL. In the feature set matching, the version is enclosed 

n an instance SHA − 1 : 01dd3693451b4c3447013297 
dda7005a2e6b32c and say, its subset instance 102- 
ash SHA − 1 : 0f64ca13e6851aaa776ffd351747c5a0 
32772b1 . We believe that all these versions are generated by 
roGuard . Although we have no evidence on the exact official 
ersion of this TPL corpus, we find this version is a buggy one.
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The sketch of the most-recent version of this TPL provides an
interface for merchants to sign order information in their own
servers, in such a way keeping private keys safely at the mer-
chants’ sides. However, after investigating this version of the
TPL, we find that if a developer uses this version of “AliPay SDK
for Android”, he must embed his private key in the APP to en-
sure the integrity of the order message, which leads to private
key leakage by reverse engineering. We performed a check on
the randomly-selected samples of this version but with differ-
ent signatures. As a result, we find that most of the APPs use
this version of TPLs with their private keys embedded in their
APPs. 

With this version of the TPL corpus in hand, we go
further to identify the shrunk or optimized TPLs. In this
stage, we implement it by feature set matching. For exam-
ple, the instances of SHA − 1 : 4d5cede3d5ca53d1a6000f
e5f5c4a5b396a78df2 and SHA − 1 : 75591cd7ffc0c142b
8880be73a2a5d389e9366ab are drastically optimized by
ProGuard , but we can still detect the buggy version in this APP.

Finally, we find that 13,578 APPs integrate this buggy ver-
sion of the TPL and most of these APPs are likely to leak pri-
vate keys in their code. Among the vulnerable APPs, over 20%
of them are shrunk or optimized by ProGuard . 

4.4. Detecting virus who breaks the integrity of a TPL 

Since the TPL corpus has been built, it can be used to detect
polluted TPLs in the detection stage. The TPL corpus is col-
lected by cloud and distributed to the edge node, in the edge
node, we compare the feature of a module with the candidate
TPL corpus. If the feature of a given module is not one of all
the versions in the TPL corpus, the module is considered to
be polluted. Take the virus GhostClicker Micro (2017) ( SHA −
1 : 0a6583a741debc90498fb693eb56509f603fc404 ) 
as example, after comparing with the closest TPL cor-
pus, we find that the virus inserts 289 Android SDK APIs
in “com.google.android.gms” and 461 Android SDK APIs
in “com.facebook” package, which completely breaks the
integrity of the TPL. 

Additionally, as Fig. 7 shows, about 22% of the successfully
decoupled TPLs are in a cycle. This is unreasonable for these
4 TPLs because the TPLs contained by this cycle is likely pol-
luted. A quick checkout finds that frameworks, such as “Ti-
tanium” or “ActionBarSherlock”, which inject their code into
these TPLs, contribute about 50% of the cycles, and other code
injection takes up the rest, which are suspicious. To continue
with the example of GhostClicker, we show in Fig. 9 , there are 3
cycles in the dependency graph. The module “com.google”and
“com.facebook.ads ” are mutually dependent. More specif-
ically, the following method enclosed in “Android Mobile Ser-
vice” contains a particular invoke instruction as follows, call-
ing the method defined in the module “com.facebook.ads ”.

Lcom/google/android/gms/logs/fb;- >< init > (Landroid/ 
content/Context;)V 

Lcom/facebook/ads/InterstitialAd;- >< init > (Landroid/content/ 
Context;Ljava/lang/String;)V 

This is abnormal because the module “com.google.gms ”
actually does not depend on the module “com.facebook.
ads ”. This illogical dependency constructs a cycle for the two
modules, and the cycle can serve as a criterion to detect code
injection to TPLs and purify the TPL corpus. 

5. Discussion 

As a leading mobile security company in China, our team
is responsible for daily processing TPLs to real-time update
the platform for mobile security. We cooperate with Alipay in
identifying the integration of old versions of Alipay SDK in a
customer service APP, which is a customized service for Alipay.
To check the version of this TPL, the cooperator provides the
interface for version query in Alipay SDK. The detection usu-
ally fails when a customer service APP is shrunk or optimized.
Moreover, the buggy version of this TPL mentioned above does
not provide interface for version query. 

When providing security audit for our customers, we find
that many customers leak credentials when using “Alibaba
Cloud Object Storage Service (OSS)”. Then we pay a close at-
tention to the “Alibaba Cloud OSS” credential leakage problem.
After browsing developer documentation of “Alibaba Cloud
OSS”, we notice that “Alibaba Cloud OSS” TPL provides a test
interface that misleads developers to leak their credentials.
An anecdotal survey on this interface invoking shows that
about 25% developers leak credentials that use “Alibaba Cloud
OSS” TPL (CNVD-2017-06366, 09774, 10187, 11666, 11811, etc.).
To date, “Alibaba Cloud OSS” has stealthily removed descrip-
tion for this interface, but that simple mitigation is not satis-
fying. To our knowledge, although the new version of “Alibaba
Cloud OSS” TPL provides developers with recommendations
when using ProGuard to ensure less mutation on this version
of TPL, the old version, “MBAAS_OSS_Android_1.0.0_” for ex-
ample, of “Alibaba Cloud OSS” TPL does not have any instruc-
tions for processing their TPL. This makes previous work fails
to detect credential leakage (the TPL and interface) when a de-
veloper integrates the old version of “Alibaba Cloud OSS” TPL
and then uses ProGuard to process. Another situation is when
helping virus analyzer to extract domain in a virus, TPL extrac-
tion can help analyzer focus on domain resided in developer
scope, rendering the analyzer to perform a fast response for
this virus. For a security audit, our customers also care about
the vulnerabilities introduced by developers or TPL providers.
Additionally, by using TPL identification work, we also provide
security un-related service to help our customers to compose
a loosely coupled APP. In summary, TPL identification is an im-
portant work for both TPL providers and customers in mobile
security analysis. 

5.1. Limitations 

The nature of TPL identification is complex, for which there is
no all-in-one solution. In practice, our PanGuard is limited in
the following aspects: 

• The threshold U is very hard to set. In the experiment, a
concrete value of U can successfully decouple one TPL, but
over-decoupled another TPL within a same APP and vice
versa. The successful decoupling rate depends on the TPL
developers. 
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Fig. 9 – Cycles in GhostClicker’s dependency graph. 

5

 

6

A
b  

w

i
M
i
p
p  

J
a
t  

2  

g
t
t
g

t
s
t
j
e
a
m
A
e
n
A  

t
t
a
d
g
l
s
t
s

• A TPL is distributed in completely distinct folders. For ex- 
ample, the most-recent version of “AliPay SDK for Android”
needs two or more signatures for this TPL, which raises the 
complexity for representation and detection. 

• A trivial modification on TPLs, usually taken security into 
consideration, does not affect the use of Android SDK APIs 
of TPLs, but does affect detection in establishing versions. 

• In the practice of TPL detection, we find some APPs con- 
tain code in their root folders (e.g., Twitter, PayPal), which 

will distort our TPL corpus establishment and decoupling 
process. 

• The biggest challenge is that it is hard to verify the results 
of the process of TPL corpus establishment. In some situa- 
tions, even TPL providers cannot offer all versions of their 
TPLs. 

• The decoupling process is a time-consuming process, and 

the cycle search is memory-consuming process, which 

does not scale well to a large dataset. 

.2. Future Work 

• In the paper, we set the upper-threshold of PDG U related 

to the number of child’s nodes, by the rule of thumb. In 

the future, we will try to search the optimal value of this 
variable. 

• We will try to verify all cycles in the modules generated by 
decoupling and find more security threats to TPLs. 

• TPL identification is the first step of our TPL security study.
In practice, we notice that most of TPL providers have no- 
ticed security problems of their TPLs and made remedies 
for their TPLs. To ensure compatibility, TPL providers usu- 
ally preserve unsafe interfaces for developers. But usually 
developers still keep using unsafe interfaces even after re- 
ceiving the warnings given by TPL providers. In such a 
case, to identify which API is invoked is helpful for security 
study. This task becomes even harder if an APP is shrunk 
or optimized. 
. Related work 

lthough security study for android is growing by leaps and 

ounds ( Chen et al., 2018 ), in this section, we only present the
orks which are related to our TPL detection. 

Clone detection . Clone detection techniques are widely used 

n Android, which are also a doable way to detect TPLs. Droid- 
OSS Zhou et al. (2012) calculates hash values for instruct- 

ng sequences of a certain length, and figures out a finger- 
rint for the whole APP by combining these hashes. The finger- 
rint is compared pairwise to identify the clone in between.

uxtapp ( Hanna et al., 2012 ) uses k -grams opcode sequences 
nd feature hashing as a signature for APPs, and identifies 
he clones existing in APP stores. DNADroid ( Crussell et al.,
012 ) and AnDarwin ( Crussell et al., 2013 ) both create the pro-
ram dependency graph as a signature for each method, and 

hen DNADroid employs subgraph isomorphism to determine 
he clones, and AnDarwin further extracts vectors from a 
raph to speed up the similarity computation. 

Feature similarity computation . Li et al. (2016) employ a clus- 
ering algorithm with some empirical assumptions to obtain 

tandalone packages, and then use these packages as signa- 
ure to further detect TPLs. They propose a naming rule to 
udge whether the APP is obfuscated or not. LibRadar ( Ma 
t al., 2016 ) only takes into account the Android APIs which 

re obfuscation-resilient for each package, and then performs 
ulti-level clustering to identify TPLs. The selected Android 

PIs can effectively reduce the impact of obfuscation. Differ- 
nt with LibRadar , our approach also considers other promi- 
ent features such as string in case few, or even no, Android 

PIs are invoked in TPLs. LibD ( Li et al., 2017 ) extracts in-
ernal code dependencies as features and uses hashed fea- 
ures to identify TPLs. LibScout ( Backes et al., 2016 ) lever- 
ges class hierarchy analysis to build Merkle trees with a fixed 

epth of three as a profile for each library. One matching al- 
orithm is proposed to calculate the similarity with collected 

ibraries. The pre-collected 800 distinct libraries of 9,623 ver- 
ions form a tangible database that ensures an accurate de- 
ection result. Compared to their works, PanGuard is not re- 
ilient to obfuscated APPs, but also to shrunk and optimized 
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APPs which takes up a large proportion 23.22% in Android
APPs. 

Machine learning-based detection . PEDAL ( Liu et al., 2015 )
takes into account the code features in Android SDKs, and
the features are used to train a classifier to identify TPLs. Ad-
Detect ( Narayanan et al., 2014 ) and LibSift ( Soh et al., 2016 )
propose using hierarchical packages and package dependency
information as features and building a classifier to classify
TPLs. In addition, they can also separate the primary code (i.e.,
the main functionality of APP) from TPLs. Compared to their
works, we only take code similarity computation to achieve
effectiveness and accuracy simultaneously. 

Edge computing . To address the concerns of response time
requirement, battery life constraint, bandwidth cost saving,
as well as data safety and privacy, industry and academia
have recently proposed edge computing. Luo et al. (2017) en-
ables cloud to automatically offload computations to the edge
servers. Chen et al. (2016b) study a multi-user computation
offloading problem in a multi-channel wireless interference
environment. Zhang et al. (2016) develop an energy-efficient
computation offloading mechanism for mobile edge comput-
ing in 5G heterogeneous networks. Sardellitti et al. (2015) pro-
pose to reduce the energy consumption by jointly considering
the radio resources and computational resources. Mao et al.
(2016) exploit renewable energy to help reduce the energy con-
sumption of mobile devices. Luo et al. (2017) design an energy-
efficient autonomic offloading scheme that can automatically
offload computational tasks to edge servers. 

7. Conclusion 

In this paper, we propose PanGuard , a novel and automated
approach to detect TPLs in Android APPs. PanGuard leverages
both structural and content information as a feature, and per-
forms a feature set matching algorithm to identify TPLs. In-
variants are studied and determined to overcome the distur-
bance caused by obfuscation, shrinkage, and optimization to
code. PanGuard successfully identifies over 10 security issues
in TPLs. PanGuard has been already deployed on our platform
Janus , which has promoted the efficiency of Janus for malware
detection and vulnerability analysis. 
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