
DRMI: A Dataset Reduction Technology based on Mutual Information for
Black-box Attacks

Yingzhe He1,2, Guozhu Meng1,2,*, Kai Chen1,2,*, Xingbo Hu1,2, and Jinwen He1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract
It is non-trivial to attack deep neural networks in black-box
settings without any model detail disclosed. Prior studies on
black-box attacks leverage a number of queries to the target
model for probing the target model or generating adversarial
examples. Queries are usually limited and costly so that the ad-
versary probably fails to mount an effective attack. However,
not all the queries have to be made since there exist repeti-
tions or redundancies that induce many inefficient queries.
Therefore, it leaves a lot of room for data reduction and more
efficient queries.

To this end, we first propose to use mutual information
to measure the data redundancy between two data samples,
and then develop a data reduction technique based on mutual
information, termed as DRMI. We implement an efficient
optimization algorithm in DRMI, so as to obtain a particular
subset of data samples, of which the mutual information in
between is minimized. We conduct extensive experiments on
MNIST, CIFAR10, and ImageNet, and six types of deep neural
networks, and evaluate DRMI in model extraction and adver-
sarial attacks. The results demonstrate its high effectiveness in
these attacks, surpassing a state-of-the-art approach by raising
7% of model accuracy and two times more transferability of
adversarial examples. Through the comparison experiments
with other three strategies, we identify what properties of data
have been preserved and removed, to some extent reveal the
essences of deep neural networks.

1 Introduction

Deep neural networks (DNNs) are now well known to be
vulnerable to many attacks [5, 24, 36], such as adversarial
attacks [9, 38, 57], model extraction attacks [58, 60], model
inversion attacks [18, 51], and poisoning attacks [27, 49]. Un-
perceivable perturbations added into an image can deceive a
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classifier in an adversarial attack. Furthermore, these weak-
nesses in DNNs are considerably magnified along with the
widespread deployment and commercialization of deep learn-
ing. To date, a line of research has successfully subverted
the mainstream deep learning systems [33, 61, 64] that can
endanger the users’ daily life.

These attacks encounter several obstacles in black-box set-
tings where most if not all information about model is un-
known. Prior research has paved a way in solving them like
e.g., transfer attacks [44,45] and optimization attacks [25,59].
Both of these attacks have to query the target model as prereq-
uisites, and then either train a substitute model [29, 45] or fur-
ther optimize the queries. With a substitute model, attackers
cannot only uncover the parameters and decision boundaries
of the model, but also generate adversarial examples (AEs)
in a white-box setting. However, in reality, a large number
of queries to the model are costly and even infeasible. That
motivates the research on reducing queries to the model.

For simplicity, we assume that attackers can access a sim-
ilar dataset of the target model in this study. As such, to re-
duce the queries in a black-box attack, we can turn to se-
lecting high quality data and eliminating redundancies from
the original for substitute model training. Similar with our
study, PRADA [29] manages to extract model information
in black-box settings. It develops a Jacobian-based method
to synthesize high quality data, and trains a substitute model
with limited queries. Tested on the MNIST [35] dataset, the
substitute model can still obtain a 90% accuracy with merely
1/300 of the data, and effectively facilitate the generation of
adversarial examples. Gradient Estimation [7] also attacks
black-box model with 61.5% success rate under 196 queries.

The motivation of our research is to reduce the query cost
of training a substitute model in black-box settings without
accessing the exact training data. The substitute model can
also be used for other attacks, such as model inversion at-
tacks [18, 51], adversarial attacks [9, 38]. To fulfill the re-
duction, we first propose mutual information (MI) [2] for
measuring the redundancies in a data set. MI is a measure of
the mutual dependence between two variables in information



theory. More dependent (or similar) variables indicate a larger
MI in between, which induces data redundancy conceptually.
Given this, we develop a data reduction technique based on
mutual information (DRMI). In DRMI, we calculate the MI
value between any two data samples, and search a subset of
fixed size to ensure the sum of MI values among selected sam-
ples is minimized (see Section 4). In this way, the selected
samples are more independent and informative for the good of
substitute model training. In addition, we compare our DRMI
with another three reduction techniques based on correlation
matrix (CMAL) [65], class probability (CPB) [42], and acti-
vated neuron trace (TRACE) [16] in Section 5.4, showing that
DRMI exhibits a more superior performance.

We design a set of experiments to evaluate DRMI compre-
hensively. These experiments are carried on the MNIST [35],
CIFAR10 [32], and ImageNet [48] datasets. Six models, i.e.,
LeNet-5 [34], C3F2 (detailed in Table 1), DNN5 (detailed
in Table 2), ResNet18 [23], ResNet152 [23], and Inception-
v3 [56], have been employed for substitute model training. In
a nutshell, DRMI surpasses PRADA by 7% in the accuracy
of substitute models, with only 50 queries on the MNIST
dataset. Based on the substitute model, we generate adver-
sarial examples and their transferability reaches up to 66%,
three times more than PRADA. Under 600 queries on MNIST,
DRMI achieves 97.3% model accuracy and 78.5% transfer-
ability using C3F2 architecture, improving 3.3% accuracy and
29.5% transferability than PRADA. Furthermore, DRMI also
raises 11.7% attack success rate with even 46 fewer queries
than Gradient Estimation. DRMI raises 1.1%, 11.2% attack
success rate with 618, 1343 fewer queries than NES [25],
AutoZoom [59] on the ImageNet dataset, respectively. Ex-
periments prove that DRMI can effectively facilitate model
extraction and adversarial attacks in black-box settings. Ad-
ditionally, the comparison experiments with three other mea-
sures show that DRMI exceeds CMAL, CPB, TRACE meth-
ods with an average accuracy of 6.46%, 9.03%, and 26.53%,
respectively. From the results, we identify several insights on
interpretability of deep learning process in Section 5.4.
Contributions. We make the following contributions.

• We propose a novel data reduction technology based on
mutual information dubbed DRMI. By solving the simpli-
fied dataset with the minimum value of the overall mutual
information, we can form a rival model of >96% accuracy
with only 1% of training data (Section 5.2).

• We conduct black-box attacks (Section 5.3) for extracting
model information and generating adversarial examples
based on the substitute model. The results show our ap-
proach outperforms PRADA in both model accuracy (+7%)
and transferability (x3), and outperforms Gradient Estima-
tion in success rate (+11.7%).

• We explore the interpretability of deep learning models
from the perspective of data reduction (Section 5.4). The

conclusions indicate the properties that are either reserved
or wiped by deep neural networks, and facilitate an in-depth
understanding.

2 Background

2.1 Dataset Reduction in Learning
Deep learning algorithms often require large datasets for train-
ing [17, 43]. That also results in the emerging of data aug-
mentation for enriching the training data [15,47]. However,
the requirement brings new problems: collecting and labeling
data cost tremendous time and resources; training model on
a large dataset occupies huge computation; and a large vol-
ume of data is susceptible to poisoned data [39]. There have
been already works on reducing training data to raise learn-
ing efficiency [12, 41]. These works explore how to simplify
the training data without loss of model correction, and even
defend poisoning attacks by eliminating low quality data.

High quality data means a specific set of samples which
can well represent and sample the whole dataset with few
redundancies and repetitions. As a kind of high-dimensional
data, there are many similarity metrics between images, such
as structural similarity (SSIM) and cosine similarity. The
mostly used method is Lp-norm, which measures the per-
ceptual similarity between original images and adversarial
images [9, 19, 57, 63]. However, recent research [50] finds
that Lp-norm is neither necessary nor sufficient for perceptual
similarity, and new metrics need to be proposed for more ac-
curate measurements [28]. In this paper, we propose a novel
concept to connect mutual information measurement with
image dataset quality. Our experiments prove that mutual
information can measure the independence, diversity and rep-
resentativeness of data. We tend to explore the application of
mutual information in more fields, such as perceptual similar-
ity.

In this paper, we propose a model-independent dataset re-
duction approach DRMI, which treats mutual information
as an indicator to measure the common information shared
by two samples. We also compare DRMI with three other
measurements–correlation matrix (CMAL), class probability
(CPB) and activated neuron trace (TRACE). CMAL constructs
a matrix to present the correlation distribution among all data
samples. It is still model-independent since it can be com-
puted in advance of model training. Additionally, we observe
the system states and outputs after training data is feed into the
model. In particular, we record the activated neurons scattered
in different layers, and the class probability for the input data.
Based on these information, we implement the corresponding
reduction techniques. As the information is processed by the
model, we take them as model-dependent measures. Although
CMAL, CPB, TRACE do not perform as well as DRMI, the re-
sults help us understand training data and models, and analyze
interesting conclusions in the view of interpretability.
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Figure 1: The workflow of our work

2.2 Black-box Attacks against DNNs
Black-box attacks against DNNs are of great variety [24, 36].
In this paper, we only focus on model extraction attacks and
adversarial attacks.
Model Extraction Attack. It is an emerging technology to at-
tack deep learning models in recent years. For deep neural net-
works, this attack tends to steal parameters [58], hyperparam-
eters [60], architectures [40], decision boundaries [29, 44, 45],
and functionalities [42]. However, it acquires a large number
of queries to the target model for simulating models’ behav-
iors. Reducing queries can not only avoid the attack being
detected, but also save monetary costs.

Existing model extraction techniques commonly require
training substitute models [42,45]. Therefore, how to improve
the effectiveness of substitute models with fewer queries has
become the main focus for this attack. We propose a data
reduction technique in this study, which enables a substitute
model up to par with smaller datasets and fewer queries.
Adversarial Attack. Adversarial attacks are the most signif-
icant threats to deep neural networks. Thousands of meth-
ods have been developed to subvert a well-trained deep
learning model. In black-box settings, queries to the tar-
get model become indispensable for either training a sub-
stitute model [10, 29, 45] or estimating approximate gradi-
ents [11, 25, 59]. The substitute model, which behaves quite
similarly with the target model, can be further used to find
AEs in a white-box manner [9, 19, 37]. These samples can be
used to attack the target model due to their transferability. In
such a case, the limitations of queries undoubtedly raise the
difficulties of attacks. Existing works have tried to increase
query efficiency from the perspective of data distribution and
properties [6, 8, 21, 53]. In this paper, our research proposes
DRMI to quantify data redundancies and gets a much simpli-
fied dataset for querying.

3 Overview

In this paper, we aim to select a simplified and representative
dataset from the original. It can not only spare the time and
computing resources for training a model, but also empower
black-box attacks with limited queries to the target model.

Figure 1 presents the workflow of our work. We start from
a known dataset and develop a data reduction technique to
obtain representative and reduced datasets. Then we use every
reduced dataset to train a new model (a.k.a. substitute model),
and adopt prediction accuracy to quantify the performance of
substitute models. The substitute model with higher accuracy
indicates that its training data is more representative for the
original.

Threat Model. In this study, the adversary aims to launch
black-box attacks, e.g., adversarial attacks and model extrac-
tion attacks, against a public deep learning service. However,
the adversary knows neither the internal structure and param-
eters of the target model, nor the exact training data. Even so,
it is still able to obtain a small dataset that has the same dis-
tribution as the training data, or a larger one with a different
distribution. The adversary can query the target model with
the possessed data and then get prediction results. It is not
necessary to acquire confidence scores for prediction although
they are often provided by commercial services. Additionally,
it has to limit the number of queries as too many queries are
costly and probably constrained by some defense measures.

1 Data Reduction. Data reduction is a technique to remove
out redundancies and repetitions from multitudinous amounts
of data, but remain critical and representative data [22]. To
explore the redundancy in deep learning, we use mutual in-
formation as a measure and develop a data reduction tech-
nique based on it (i.e., DRMI). Moreover, we implement an-
other three reduction techniques based on correlation matrix
(CMAL), class probability of prediction (CPB) and traces
of activated neurons (TRACE) for comparison. In particular,
DRMI and CMAL are performed merely on the training data,
and not related to deep training. Therefore, they are model-
independent. CPB and TRACE both require to interact with
the target model, i.e., collecting the prediction result or inter-
nal states when one data sample passes through the model. As
such, we regard them as being model-dependent. In this study,
we employ all these four strategies to reduce the training data,
and subsequently shape a substitute model.

2 Black-box Attacks. The trained substitute model can be
applied for further black-box attacks against deep neural net-
works. More specifically, the substitute model is a close ap-
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Figure 2: An illustrative example for DRMI. There are six images (noted as from 1 to 6) have quite similar appearance in pairs.
The edge indicates the mutual information between two images. Thicker line indicates larger value. To form a subset with three
images, we select images 1, 4, and 6 since the sum (1.44) of their MI values is minimal.

proximation of the target model in prediction. Hence, it helps
to infer the parameters of the target model which is known as
model extraction attacks [58, 60]. In this paper, we leverage
prediction accuracy as the success rate for a model extraction
attack. The substitute models created by the four techniques
are compared, and the result shows DRMI has achieved the
best performance (see Section 5.2 and 5.4). Based on the
result, we also conclude a number of new views on the inter-
pretability of deep neural networks.

On the other hand, the substitute model can be utilized for
generating adversarial examples in black-box settings [8, 21,
53] or white-box settings [29,45]. Data reduction is especially
beneficial for transfer attacks [6, 55] since it lowers the cost
of model querying. Therefore, we conduct adversarial attack
experiments based on our reduction techniques to evaluate
its usefulness. We adopt the PGD method [37] to generate
adversarial examples towards a substitute model, and test their
transferability to the target model. Success rates are computed
and compared with other state-of-the-art approaches.

4 The DRMI Approach

In this section, we detail the DRMI approach by formaliz-
ing the problem, analyzing its complexity and providing the
solution.

4.1 Problem Formalization

We aim to select a more representative and reduced dataset
through minimizing the mutual information value between
any two data samples as shown in Figure 2. Assuming a big
dataset D, and n = |D|, we intend to find a simplified dataset
S, where S⊂D,k = |S|< n. For every two samples u∈D and
v ∈ D, we calculate the mutual information value MI(u)(v)
between them and get the MI matrix. According to the defini-
tion of mutual information in information theory [14], given

the images u and v, we compute their MI value as:

MI(u)(v) =
R

∑
i=0

R

∑
j=0

Puv(i, j) log
Puv(i, j)

Pu(i)Pv( j)
(1)

R is the maximum pixel intensity value. The marginal prob-
ability distribution Pu(i) refers to the ratio of the pixels of
intensity value i in image u to all the pixels in image u. Puv
is the joint probability distribution function between two cer-
tain images u and v. The probability Puv(i, j) refers to the
ratio of the number of pixel points, where the pixel inten-
sity value is i in image u and j in image v under the same
coordinates, to the total number of pixels. If Puv(i, j) = 0,
we handle Puv(i, j) log Puv(i, j)

Pu(i)Pv( j) = 0. For each pair (u,v),u ∈
D,v ∈ D,u 6= v, we calculate its MI value by Equation 1, and
obtain the MI value matrix. Equation 1 considers not only the
number of pixel intensity values, but also their positions.

For a seek of generalizability, we introduce a new matrix
I and a hyperparameter α used to represent the weight of
mutual information. The choice of α is discussed in Section 7.
The correspondence between matrix I and mutual information
is as follows:

I[u][v] = MI(u)(v)α (2)

For convenience, we will use matrix I hereafter. Therefore,
the process of sampling k data points with minimizing the
sum of MI values between them can be formalized as:

argmin
S

H =
1
2 ∑

i∈S
∑
j∈S

I[i][ j], i 6= j (3)

We use H as this minimum and 1/2 is multiplied to avoid
redundant computation.

To solve the problem in Equation 3, we propose to formal-
ize it as a graph theory problem. Let G= {V,E} be a weighted
undirected graph without self-loops and parallel edges. V is
the set of vertices, and E is the set of edges. Each edge e ∈ E
is associated with a real number w(e). With regard to this
problem, we treat each data sample as a vertex v. For every



two samples v and u, we can link them up with their mutual
information I[u][v] as the weight. Therefore, a data set can be
modeled as a undirected complete graph with weights. In the
sequel, the problem can be converted as: Given a weighted
undirected complete graph G with n vertices, find an induced
graph with k vertices (k < n), of which the sum of edge weights
is minimal. To gain an induced graph G[S], we will address
the following in this study.

argmin
G[S]

H = ∑
e=(u,v)

w(e), u,v ∈ S,u 6= v, and e ∈ E (4)

4.2 Complexity Analysis
Unfortunately, the problem in Equation 4 is a NP-Complete
problem. There is no optimal solution in polynomial time to
date. We give a strict proof in the following.
Proof of NP. Given a subset S ⊂ V with k vertices, we can
calculate the sum of weights in the induced subgraph G[S] in
polynomial time using Equation 4. So we can verify every
solution in polynomial time, proving that the problem is NP.
Proof of NP-Hard. Here we use another NP-Complete
problem–the maximum independent set to complete the
proof [30]. We need to prove that the maximum independent
set problem can be reduced to our problem in polynomial
time. In a simple unweighted undirected graph Gi = {Vi,Ei},
e = (u,v) ∈ Ei, u,v ∈Vi, we call S⊆Vi an independent set if
and only if:

∀u,v ∈ S, (u,v) /∈ Ei (5)

Given a graph Gi and an integer k < |V |, the maximum inde-
pendent set problem is to determine if there is an independent
set S of at least size k.

Next, assuming that our problem is solvable, we use our
problem to solve the maximum independent set problem. We
convert the unweighted undirected graph Gi = {Vi,Ei} into a
weighted undirected complete graph Gc = {Vc,Ec}(Vc =Vi)
where w(e) denotes the weight for edge e = (u,v) and e ∈ Ec.
The conversion satisfies the following constraints:

w(e) =
{

1, ∀u,v ∈Vi and (u,v) ∈ Ei
0, ∀u,v ∈Vi and (u,v) /∈ Ei

(6)

If vertices u and v have an edge in graph Gi, we add a 1-
weighted edge between them into graph Gc. If vertices u and
v have no edge in Gi, we add a 0-weighted edge in Gc. Then
we use Equation 4 to calculate the minimum H of a complete
subgraph with k vertices on graph Gc. If H = 0, it means there
exists k vertices in Gc, and the weight of any two vertices is 0.
It indicates that there exists an independent set S with size k
in graph Gi. Similarly, if H > 0, it means there does not exist
any independent set S of at least size k in graph Gi.

Therefore, the maximum independent set problem can be
reduced to our problem in polynomial time. Since the max-
imum independent set problem is NP-Hard, our problem is

Algorithm 1: Data Reduction on Mutual Information
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of target subgraph
Output: Smin where Smin ⊂V ∧|Smin|= k

1 Hmin←MAXNUM;
2 Smin←{};
3 for t ∈V do
4 S0← greedy_choice_initialization (t);
5 S,H ← one_hot_replacement_optimization (S0);
6 if H < Hmin then
7 Hmin← H;
8 Smin← S;

9 return Smin

also NP-Hard. As NP-Complete is the intersection of NP and
NP-Hard, the problem we need to solve is NP-Complete.

4.3 Our Solution

Since our problem is NP-Complete, there is no optimal so-
lution in polynomial time. We propose a novel and effective
heuristic algorithm to approximate the optimal solution, i.e.,
obtaining the induced subgraph whose mutual information H
approximates the minimal as Equation 4. First, we select an
initial vertex t, and determine another k−1 vertices based on
mutual information with a greedy strategy. As a consequence,
we obtain an initial subset S0 where |S0|= k. Then, we opti-
mize this subset iteratively in order to sustainedly lower the
weights sum according to Equation 4. After a limited iter-
ations, we are able to get a stable set SF and H reaches its
approximate optimal value.

Algorithm 1 presents the overall process of our data re-
duction technique. It proceeds with n iterations (Line 3). For
each iteration, it selects one vertex in V and passes it to the
initialization phase in Line 4. As such, the initial subset S0
is obtained. S0 goes through an optimization phase in Line
5, where the optimized subset S and the associated H are re-
turned. Line 6-8 show that we will keep the superior solution
while discard the inferior one. At last, Smin is the approximate
optimal solution.

4.3.1 Initialization

In the phase of initialization, we construct a primary subset
S0, starting from the passed vertex t. The construction is
realized with a greedy strategy, so the phase is termed as
greedy-choice initialization. There are two methods to guide
the greedy process as follows.
Min-sum method. Given the first vertex t, we initialize
S0 with t and additionally maintain a sumI array, of which
sumI[p] denotes the sum of MI values between data point p



Algorithm 2: Greedy-choice Initialization
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of simplified set, t: the
initial data point (vertex)

Output: S0 where S0 ⊂V ∧|S0|= k
1 S0←{t};
2 f (i)← I[t][i], i /∈ S0;
3 for i = 2 to k do
4 p′ = argminp f (p), p /∈ S0;
5 S0 = S0

⋃
{p′}

6 f (x) = g( f (x), I[p′][x]), x /∈ S0;

7 return S0

and every other element in set S0:

sumI[p] = ∑
q∈S0

I[p][q], q 6= p (7)

S0 has only one element t at first. Then we select p′ which
minimizes sumI[p′] and p′ /∈ S0. After that, we add p′ into S0
and maintain the sumI array with Equation 7. We repeat the
selection process and stop if |S0|= k. This method takes seed
t as the starting point, and selects the data outside set S0 that
has the least MI sum with all points in set S0 at every time.
Min-max method. In min-sum method, we attempt to mini-
mize the distance between the added sample and all samples
already in the set. That is, the new sample has the least aver-
aged similarity to the existing. While in min-max method, the
new sample has the least maximum similarity to the existing
samples. For example, if one sample is very similar to one
in the set, we will not add it even though it is very differ-
ent from any other samples. Correspondingly, we change the
Equation 7 to the following maxI array:

maxI[p] = max
q∈S0
{I[p][q]}, q 6= p (8)

Algorithm 2 presents the process of obtaining a good initial
set from the vertex t. S0 is the initial set. At first, S0 only
has one vertex t (Line 1). Then we calculate f (·) (Line 2)
where f (·) is either sumI[·] or maxI[·]. Now the sum of the
distances between each vertex i to all the vertices in S0 is
I[t][i]. Line 3 to 6 are a loop to add vertices into S0. In each
iteration, we find the vertex p′ which has the minimum value
in f (p) at line 4. Then we add the new vertex into S0 at line
5. The addition of p′ needs an update to f (x) by I[p′][x] at
line 6. If f (·) is sumI[·], g(a,b) = a+ b. If f (·) is maxI[·],
g(a,b) = max(a,b). Last, this algorithm returns the initial set
S0. The time complexity of Algorithm 2 is O(kn).

4.3.2 Iterative Optimization

After getting an initial set S0, we define two arrays In and
Out. In[i] expresses the sum of MI values between i and

Algorithm 3: One-hot Replacement Optimization
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of simplified set, S0: the
initial set where |S0|= k

Output: S,H where S⊂V ∧|S|= k
1 S← S0;
2 H← 0;
3 In[t] = ∑ j I[t][ j], t ∈ S, j ∈ S, j 6= t;
4 Out[t] = ∑ j I[t][ j], t /∈ S, j ∈ S;
5 H = H + 1

2 ∑t In[t], t ∈ S;
6 while True do
7 p = arg maxt In[t], t ∈ S;
8 q = arg min j Out[ j]− I[p][ j], j /∈ S;
9 if Out[q]− I[p][q]>= In[p] then

10 break;

11 H = H +Out[q]− I[p][q]− In[p];
12 S = S

⋃
{q}\{p};

13 In[q] = Out[q]− I[p][q];
14 Out[p] = In[p]+ I[p][q];
15 In[t] = In[t]− I[t][p]+ I[t][q], t ∈ S, t 6= q;
16 Out[t] = Out[t]− I[t][p]+ I[t][q], t /∈ S, t 6= p;

17 return S,H

other points from S0, which makes sense when i ∈ S0. Out[i]
expresses the sum of MI values between i and all points from
S0, which makes sense when i /∈ S0. Then we can calculate
the initial value H:

H =
1
2 ∑

i∈S0

∑
j∈S0

I[i][ j] =
1
2 ∑

i∈S0

In[i], j 6= i (9)

Next, we need to adjust set S(= S0). Starting from S, we
remove a data point with poorest performance in set S, and
move into a data point with best performance outside set S.
Here, poor performance means this point has the maximum
In value, and good performance means the minimum Out
value. If a swap (p,q) could make H decrease (H ′ < H in
Equation 10), we perform such an exchange.

H ′ = H +Out[q]− In[p]− I[p][q], p ∈ S, q 6= S (10)

Then we repeat the above exchange process until H is no
longer decreasing. We call this method of adjusting and opti-
mizing the solution as one-hot replacement.

Algorithm 3 presents the one-hot replacement optimization,
which is based on the exchange of vertices to optimize the
solution. This algorithm needs to optimize the final set S and
reduce H value according to the initial set. We give the initial
set S0 to the final S at line 1. For a vertex in S, we compute
the sum of distances with other vertices in S (Line 3). For
a vertex not in S, we compute the sum of distances with all
vertices in S (Line 4). Then we calculate the initial H value.



Line 6 to 16 are the loop to find set S with smaller H values.
According to Equation 10, we first find the vertex p which
has the maximum In[p] in S, then the vertex q which has the
minimum Out[q]− I[p][q] not in S. Line 9 and 10 are the ter-
mination condition of the loop. If this condition is satisfied,
H will not decrease after swapping vertices. Line 11 to 16
explain how to update variable values during the exchange
process. Line 11 calculates the new H, and line 12 puts q in
and puts p out to update S. Line 13 to 16 update the In or Out
values for each vertex according to moving in a new vertex
q and out an old vertex p. After the loop ends, the algorithm
returns the minimum H and its corresponding set S at line 17.
This algorithm can be terminated efficiently partially due to
the greedy-choice initialization which offers an approximated
optimal solution. It then takes only a few exchanges to reach a
better solution. The transitivity of data similarity [62] further
prevents one sample from being exchanged for multiple times.
As a consequence, the replacement is expected to be termi-
nated within O(k) iterations. Our experiments with different
datasets also confirm that the iteration number is lower than
a constant (<10) multiple of k. Additionally, the worse-case
complexity of the in-loop computation is O(n). Therefore, the
time complexity of one-hot replacement is O(kn).

5 Evaluation

In this section, we describe the implementation details of our
approach and the evaluation experiments.
Implementation. We implement DRMI with 2.5K lines of
Python on top of PYTORCH [3]. The adversarial examples are
evaluated by the targeted PGD [37] method using foolbox [4]
library. The experiments are conducted on a server with 16
Intel(R) Xeon(R) CPUs of E5-2620 and 32GB memory, 2
NVIDIA GM200 [GeForce GTX TITAN X] GPUs and 1 AS-
PEED Video AST2400 GPU. These experiments are carried
out to evaluate the efficiency and efficacy of DRMI. Through
these experiments, we intend to answer:

RQ1. How effective is DRMI to reduce data for training?

RQ2. How does it facilitate black-box attacks?

RQ3. How is other reduction strategies, and what can be
interpreted from the results?

5.1 Experiment Setup
Experiment Data. We conduct our experiments on
MNIST [35], CIFAR10 [32], and ImageNet [48]
(ILSVRC2012) datasets. The MNIST dataset contains
60,000 training images of 10 classes and 10,000 test ones. Its
samples are 28×28 grey-scale images of handwritten digits.
CIFAR10 contains 50,000 training samples of 10 classes
and 10,000 test data. Its samples are 32×32 RGB images.
ImageNet contains about 1,200,000 training data, 100,000

Table 1: Parameters of the C3F2 model

Layer Name Output Dimensions

Input 1 * 28 * 28
Convolutional layer 16 * 24 * 24
Convolutional layer 32 * 20 * 20
Max-Pooling layer 32 * 10 * 10
Convolutional layer 64 * 6 * 6
Max-Pooling layer 64 * 3 * 3

Fully connected layer 100
Fully connected layer 10

Table 2: Parameters of the DNN5 model

Layer Name Output Dimensions

Input 784
Fully connected layer 1 512
Fully connected layer 2 256
Fully connected layer 3 128
Fully connected layer 4 64
Fully connected layer 5 10

test data, and 50,000 validation data of 1,000 classes. Its
samples are 224×224 RGB images. We train the substitute
model on a simplified training dataset and test model on the
test dataset.
Target Model. We select LeNet-5 [34], C3F2 and DNN5
model structures on dataset MNIST. We adopt model
ResNet18 [23] on dataset CIFAR10, and Inception-v3 [56],
ResNet152 [23] on ImageNet. LeNet-5 is an efficient convolu-
tional neural network for handwritten character recognition. It
includes 2 convolutional layers, 2 pooling layers, and 3 fully
connected layers. Table 1 shows C3F2’s model architecture.
It has 3 convolutional layers, 2 pooling layers, and 2 fully
connected layers. Table 2 details DNN5’s model architecture.
It has 5 fully connected layers and no convolutional layer.
ResNet is a residual network, which is used for more complex
image classification.
Experiment Configuration. When training models on a sim-
plified dataset, we set batch size to 4 on MNIST and 64 on
CIFAR10. We use max-pooling in pooling layers, cross en-
tropy loss to calculate losses. By default, we take adaptive
moment estimation (Adam) as the optimizer and set the learn-
ing rate to 0.001. Our data selection is carried out under the
same label. That is, we determine a simplified dataset for each
category, and then glue them together into the training dataset
for our experiments.
Baseline Method. We implement a baseline method in this
paper to show to what extent our approach can raise in data re-
duction. In the baseline method, we randomly select a specific
number of samples without any intelligence. Taking MNIST
as an example, we select samples for each digit proportionally
and randomly, and then train a substitute model as well as
measuring its accuracy. This process is repeated for five times
and the result is averaged in a comparison.
Manual Reduction Method. To verify whether our approach
can excel manual efforts in data reduction, we invite two vol-



Table 3: Evaluations of model LeNet-5 on dataset MNIST.
“Test Accuracy” means the substitute model accuracy on the
test dataset. The optimal LeNet-5 model performance trained
on the full dataset (60,000 data) reaches 99.17% accuracy.
“Queries” is the number of queries to the original model, also
the size of simplified set.

Method α
Test Accuracy

Queries = 600 Queries = 300 Queries = 150

DRMI (min-sum)
1 95.59% 93.74% 88.01%
2 95.84% 94.29% 92.13%
4 96.38% 94.09% 91.35%

DRMI (min-max)
1 95.52% 91.99% 87.07%
2 96.01% 93.49% 90.15%
4 96.41% 94.14% 91.99%

manual reduction - 94.65% 92.46% 86.57%
baseline - 91.91% 88.48% 84.97%

Table 4: Evaluations of model ResNet18 on dataset CIFAR10.
The original ResNet18 model trained on the full dataset
(50,000 data) obtains 93.90% accuracy. “AD Size” is the
dataset size of attackers can get. “Queries” is the number of
queries to the original model, also the size of simplified set.

AD Size Queries Test Accuracy
DRMI (min-sum & α=2) baseline

25,000

10,000 92.50% 80.05%
4,000 89.74% 72.28%
1,000 82.28% 55.72%
500 73.46% 44.58%

unteers with normal eyesight and intelligence to collectively
select typical and non-repetitive images from the MNIST
dataset. If two images look similar in appearance, or are mirror
symmetry, we remain only one image. The manually selected
data will be tested and measured for comparison.

5.2 Effectiveness of Data Reduction

To answer RQ1, we train a substitute model on the simplified
dataset with DRMI, and compute the accuracy and loss value
of the model on the test dataset. The effectiveness of data
reduction is evaluated threefold: different datasets, which we
used to guide the optimization; different reduction degrees, to
which we simplified the training data, i.e., with only 1% or
even 0.1% of the original data, and; different target models,
to evaluate whether DRMI is widely applicable.

5.2.1 Different Datasets

Here we test different parameters and solutions in DRMI
on different datasets. In Equation 2, we introduce α for MI
value. When α is larger, a larger MI value has a greater effect
on the result, but also means a larger penalty. Here we select
α = 1,2,4. We also adopt two initial solutions “min-sum” and
“min-max” (see Algorithm 2) to evaluate different solutions.

Table 3 evaluates substitute models when adopting different
parameters and solutions under the LeNet-5 model architec-

Table 5: Evaluations on ImageNet. The original Inception-
v3 model reaches 94.5% top-5 accuracy and 79.2% top-1
accuracy. The original ResNet152 model reaches 94.0% top-5
accuracy and 78.8% top-1 accuracy. We adopt Inception-v3
and ResNet152 structures as substitute models respectively.
Here we adopt the “min-sum” method and choose α = 2. “AD
Size” is the dataset size of attackers can get. “Queries” is the
number of queries to extract a substitute model, also the size
of simplified set.

AD Size Queries Inception-v3 ResNet152
Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc.

200,000 100,000 90.6% 73.9% 90.2% 73.6%
50,000 87.7% 68.5% 87.2% 68.7%

50,000 20,000 82.3% 63.8% 80.8% 62.9%
10,000 77.0% 57.9% 76.7% 57.4%

10,000 5,000 72.5% 48.4% 71.7% 47.8%
2,000 61.8% 40.2% 60.5% 39.1%

baseline 100,000 73.8% 52.7% 72.2% 51.5%

ture. It is observed that the model gets the highest prediction
accuracy when α = 4 under 600 samples, and α = 2 under
300 and 150 samples. α = 1 performs worst on all sizes and
algorithms. This indicates that we need to impose a heavier
penalty on the larger MI value. Moreover, the two methods
“min-sum” and “min-max” perform almost the same. Com-
pared to the manual reduction method, DRMI has raised the
accuracy by 1.76%, 1.83%, and 5.56% on 600, 300, and 150
sized samples. Compared with the baseline method, our meth-
ods have greatly raised the accuracy by 4.50%, 5.81%, and
7.16% on 600, 300, and 150 sized samples, respectively. Since
the upper limit of test accuracy is 99.17%, our methods have
improved the baseline method by 62%, 55%, and 51% on
600, 300, and 150 sized samples respectively in the whole
improvable space.

Remark: From the experiments with varying parameters,
it concludes that a higher power α for mutual information
(i.e., greater penalties for large MI values) leads to a better
reduction, where our two initial solutions both perform well.
All of our best methods improve more than 50% from the
baseline method within the improvable space.

We choose model ResNet18 to train substitute models on
CIFAR10 and present the results in Table 4. Here we select
the “min-sum” method and α = 2. CIFAR10 images are more
complex, so the training effect decreases. When querying
10,000 data, DRMI achieves 92.50% accuracy, only 1.40%
gap to reach the original model. We also achieve 89.74%,
82.28%, and 73.46% accuracy with 4,000, 1,000, and 500
query, improving 17.46%, 26.56%, and 28.88% accuracy than
the baseline method respectively. This shows that DRMI also
works effectively on the CIFAR10 dataset.

Table 5 evaluates DRMI on the ImageNet dataset using
Inception-v3 and ResNet152 models. When we use a simpli-
fied set with 100,000 data (8.3% of the target training set),
DRMI still reaches 90.6% top-5 accuracy and 73.9% top-1
accuracy, while 100,000 random queries in baseline only gets



Table 6: Evaluations when attackers only obtain limited data. The target model is trained on MNIST. Attackers get some data
which matches the distribution of the target dataset (MNIST) in the left part, and obtain data from USPS (7291 data in total)
which does not match the distribution in the right part. Here we use “min-sum” method and choose α = 2. “AD Size” is attackers’
dataset size. It means how many samples attackers can get. “150” means the attacker chooses 150 representative samples from
his dataset using DRMI. “ALL.” means attackers query the target model for all their data, which consumes lots of query overhead.
The complete training dataset has 60,000 data. “Test Acc.” means the substitute model accuracy on the test dataset.

AD Size Test Acc. under different size of simplified set on MNIST AD Size Test Acc. under different size of simplified set on USPS
600 300 150 100 60 ALL. 600 300 150 100 60 ALL.

60,000 95.84% 94.29% 92.13% 88.09% 83.27% 99.13% - - - - - - -
10,000 95.57% 93.01% 90.85% 87.97% 82.86% 98.27% 7,291 93.65% 92.15% 89.94% 86.69% 81.73% 95.56%
5,000 94.83% 92.40% 90.51% 87.77% 82.65% 97.56% 5,000 93.36% 91.88% 89.57% 86.24% 81.47% 94.69%
2,000 94.67% 92.05% 90.29% 86.38% 82.09% 96.33% 2,000 92.50% 91.20% 89.08% 85.41% 80.42% 93.17%
1,000 94.50% 91.76% 90.08% 86.13% 81.80% 95.36% 1,000 91.81% 90.89% 88.67% 85.11% 80.09% 92.26%
600 - 91.06% 88.58% 84.95% 80.42% 92.84% 600 - 90.23% 87.88% 84.30% 79.16% 90.83%

Table 7: Evaluations of C3F2 model and DNN5 model on
MNIST. “Test Accuracy” means the substitute model accu-
racy on the test dataset. The original C3F2 model trained on
the full dataset (60,000 data) reaches 99.28% accuracy. The
original DNN5 model reaches 98.03% accuracy. The number
of “Queries” is also the size of simplified set.

Model Method α
Test Accuracy

Queries = 600 Queries = 300 Queries = 150

C3F2

min-sum
1 95.10% 91.21% 89.98%
2 96.54% 94.03% 86.59%
4 97.25% 94.57% 90.49%

min-max
1 96.05% 92.43% 88.89%
2 96.40% 94.57% 89.02%
4 97.34% 94.41% 91.12%

baseline - 92.40% 90.65% 85.18%

DNN5 min-sum
1 87.87% 80.80% 68.06%
2 86.78% 82.79% 71.13%
4 90.11% 83.79% 74.77%

baseline - 82.99% 73.87% 64.12%

73.8% top-5 accuracy and 52.7% top-1 accuracy. When the
attacker only uses 10,000 data, we can get a substitute model
with 77.0% top-5 accuracy. Results show that DRMI also
works on the ImageNet dataset.

Remark: Our DRMI also performs well on CIFAR10 and
more complex datasets like ImageNet. DRMI shows superior
performance on different datasets.

5.2.2 Different Reduction Degrees

In order to assess the relationship between reduced samples
and corresponding accuracies, we conducted an experiment
with different k for Equation 4. More specifically, we sample
training data of varying sizes (e.g., k=60, 600, or 6,000).The
accuracies are measured for each training. Figure 3 shows the
curve of the accuracy rates of substitute models with different
dataset sizes. In PRADA, we only found results below 500
samples. Compared to other methods, our curve has high
accuracy when the size is very small. It has reached 82% at
50 samples, 92% at 150, and 97% at 600. In PRADA [29],
the accuracy of 50 samples is only 75%, 82.5% at 100, and
90% at 200. In the baseline method, the accuracy is lower
than 70% at 50 samples, even 300 samples can only achieve

Figure 3: The curve of model accuracy under different dataset
sizes on MNIST.

an accuracy of 89%. This shows that DRMI can achieve high
performance with small queries. The gap between DRMI and
baseline is about 5% at 600 samples, 7.5% at 150, and more
than 10% at 50. The gap between DRMI and PRADA is about
3.3% at 200 samples, 4.8% at 100, and 7% at 50. When the
dataset size exceeds 2,000, the gap becomes smaller and is
filled when the size is larger than 20,000.

Remark: Our DRMI method can obtain a high accuracy
with a small-sized dataset. When the dataset size is greater
than 50, the smaller the dataset size, the greater the gap be-
tween other methods and ours.

As claimed in “Threat Model” at Section 3, DRMI can still
performs effectively when attackers can only access some
data (may not in the training set) that has the same distribu-
tion with the training data. It is evaluated and presented as
shown in Table 6. In this experiment, the dataset is randomly
divided into two parts (except the “60,000” row). One part can
be obtained by attackers, whose size is “AD Size” in Table 6,
and the other is used to train a target model. This guarantees
that attackers can only access the data of the same distribution
with the training dataset, not the exact training data. The row
of “60,000” is the situation when the attacker has all training
samples. From the perspective of each column, the test accu-



racy only decreases slightly when the attacker has a smaller
dataset. When the attacker has only one-tenth of previous data
(from 10,000 to 1,000), the substitute model’s accuracy only
decreases 1.07%, 1.25%, 0.77%, 1.84%, 1.06% under 600,
300, 150, 100, 60 queries, respectively. When the attacker can
only get 600 samples, DRMI also obtains 91.06% accuracy
under 300 queries. The accuracy decline from 60,000 “AD
Size” to 600 is between 2.85% and 3.55% under 300, 150,
100, and 60 queries. Results show that DRMI still performs
well even when the attacker only has limited data. DRMI can
select representative data from a small dataset, and the stolen
substitute model still has a high accuracy rate.

We also do similar experiments on ImageNet in Table 5.
The dataset size of the attacker varies from 200,000 to only
10,000. DRMI can achieve 72.5% top-5 accuracy through
5,000 data when the attacker only obtains 10,000 samples.

Remark: DRMI performs well when attackers only have
a very small dataset. DRMI also does not need attackers to
know the exact training data.

In order to explore the performance of DRMI when attack-
ers obtain a different dataset that does not match the distribu-
tion of the training dataset, we choose another handwritten
digits dataset USPS [1] and present the results in Table 6.
Attackers utilize the USPS data to steal the target model
trained on MNIST. Querying 7,291 data gets a 95.56% substi-
tute model, while querying 600 representative samples using
DRMI still reaches a 93.65% model. Compared to MNIST,
using USPS data for attack only decreases 1.47%, 0.52%,
0.94%, 1.53%, 1.18% accuracy under 600, 300, 150, 100, 60
queries when attackers have 5,000 samples. Results show that
using USPS data can still attack the target model, with a bit
of accuracy decrease compared to using MNIST data.

Remark: DRMI still works well when the attacker’s dataset
does not match the distribution of the target training dataset.

5.2.3 Different Models

To evaluate its generality amongst varying models, we test
our approach against C3F2 and DNN5 models on MNIST.
Table 7 shows the results of training substitute model against
a C3F2 model and a DNN5 model, spanning from size 150
to 600. We can see that the accuracies on C3F2 and LeNet-5
(see Table 3) models are all higher than that of DNN5 model,
which is determined by model structure itself. The best C3F2
results are 7.23%, 10.78%, and 16.35% higher than the best
DNN5 results on 600, 300, and 150 size.

In addition, the accuracy under α = 1 still performs the
worst, and there is a gap with cases of α = 2 or 4. This also
demonstrates the need to give high penalties (large α) to
images with high similarity (large MI value) in the reduced
dataset. Comparing the two algorithms, “min-max” and “min-
sum” are still not far behind. On 600 dataset size of C3F2, we
improve the test accuracy up to 97.34%, which is only fewer
than two percentages away from the optimal model.

Compared to the baseline method, our approach on C3F2
has increased by 4.94, 3.92, and 5.94 percentages on 600, 300,
and 150 dataset sizes, respectively. According to the upper
limit of 99.28%, our improvement has reached 72%, 45%,
and 42% on 600, 300, and 150 dataset sizes in the improvable
space. On the DNN5 model, DRMI improves 7.12%, 9.92%,
and 10.65% accuracy than baseline on 600, 300, and 150 size.

Table 5 shows attackers adopt an Inception-v3 and a
ResNet152 network to steal the Inception-v3 target model
on ImageNet. The top-5 and top-1 accuracy are very similar
(< 2%) on the two substitute model structures.

Remark: To sum up, our approach can be applied to a wide
range of model structures (CNNs and DNNs), which proves
the excellent generalizability of our DRMI method. The at-
tacker does not need to know the target model architecture. It
is largely attributed to its model-independent property. As a
result, given a dataset, we can extract a high-quality reduced
dataset, which can be applied to different models.

Jagielski et al. [26] also focuses on extracting high-
accuracy substitute models with fewer queries. Their learning-
based extraction adopts semi-supervised learning techniques.
Here we make a comparison. On ImageNet, DRMI reaches
90.6% top-5 accuracy using about 8.3% data, and their method
achieves 86.2% top-5 accuracy using 10% data. On CIFAR10
for 4,000 queries, DRMI reaches 89.74% accuracy, better
than 86.51% in their fully supervised extraction, indicating
that the quality of our queries is higher than theirs, but worse
than 93.29% accuracy in their MixMatch extraction. This is
mainly because they not only use query data for fully super-
vised learning, but also perform semi-supervised learning on
the remaining unlabeled data in the training set.

5.3 Catalytic Effect for Black-box Attacks

We aim to answer RQ2 by evaluating how our approach fa-
cilitates black-box attacks. The accuracy evaluation proves
that our substitute model is functionally similar to the target
model. Here we evaluate the decision boundary similarity
between them through attack success rate of adversarial ex-
amples (AEs). Adversarial attacks are a major technology
to undermine the security of deep learning models. Training
substitute models has been a method of black-box adversarial
attacks. By querying the target model, attackers can obtain
class probabilities of their inputs. Then they use these data
to train a substitute model, and adopt white-box adversarial
attacks to generate AEs on it. At last, attackers use these AEs
to attack the target model and evaluate the success rate ac-
cording to the transferability of AEs. In this process, training
dataset quality and query numbers are particularly important.
Attackers need to get a high quality dataset and use fewer
queries for the target model.

Here we use our MI technique for black-box adversarial
attacks. We adopt the simplified dataset produced by the MI
method to query the target model, and train a substitute model



Table 8: Transferability of adversarial examples on target
models generated by substitute models. Adversarial examples
are generated by PGD. “Transferability” means success rate
of adversarial examples on target model. “LeNet-5 (1,000)”
means the attacker only has a small dataset with 1,000 data
points. Experiments are under the same environments.

Queries Target model Transferability Accuracy

50

LeNet-5 66.06% 82.27%
C3F2 48.80% 80.96%

LeNet-5 (1,000) 42.62% 80.40%
PRADA [29] 22% 75%
Practical [45] 19% 65%

150

LeNet-5 68.32% 92.13%
C3F2 69.64% 91.12%

LeNet-5 (1,000) 54.45% 90.08%
PRADA 29% 89%
Practical 27% 81.20%

200

LeNet-5 69.15% 93.27%
C3F2 70.13% 92.18%

LeNet-5 (1,000) 57.90% 91.13%
PRADA 31% 90%
Practical 28% 85%

300

LeNet-5 69.80% 94.34%
C3F2 76.37% 94.57%

LeNet-5 (1,000) 60.70% 91.76%
PRADA 39% 91%
Practical 33% 87%

600

LeNet-5 71.98% 96.49%
C3F2 78.51% 97.34%

LeNet-5 (1,000) 65.74% 94.50%
PRADA 49% 94%
Practical 39% 90%

based on class probability information we obtained. Then
we use the PGD [37] (projected gradient descent) method
to generate targeted AEs on the substitute model. Finally,
we apply targeted AEs which could successfully attack the
substitute model to the target model, and evaluate its attack
success rate. We choose the optimal model trained on the
full dataset as the target model. PGD is an enhanced version
of FGSM [19]. It is essentially projected gradient descent
on negative loss function [37]. PGD can easily control the
size of perturbations and is fast to compute. We import the
PGD method from the foolbox [4] library. We set the upper
perturbation (ε) limit to 128/255 after several attempts. As ε

increases, the attack effect gets better, but as ε continues to
increase, the effect does not change significantly. During an
attack process, we randomly select 5,000 seed samples in the
test dataset as a benchmark. For each sample, we generate 9
targeted AEs that are misclassified into all other categories by
the substitute model. There are totally 45,000 targeted AEs,
which take about 1.5 hours to generate (averagely 0.12s for
one AE). Compared with untargeted AEs, targeted AEs not
only make misclassifications, but also lead into the specified
categories, which are more difficult for generation.

Through attacking the target model with AEs, we calculate
transferability and draw confusion matrices. In Table 8, we
evaluate LeNet-5 and C3F2 model structures and compare

Figure 4: Confusion matrices of targeted adversarial examples
attacking the target LeNet-5 model.

Figure 5: Confusion matrices of targeted adversarial examples
attacking the target C3F2 model.

with state-of-the-art PRADA [29] and Practical [45]. The ex-
perimental environment is on the MNIST dataset. AEs are
from 5,000 randomly selected normal samples in the test
dataset. The upper perturbation size is set as 128/255. In
DRMI, the AEs transferability reaches 66% under only 50
queries, while 22% in PRADA. Our approach is nearly three
times as much as them. The accuracy of our substitute model
is also 7% higher than them. As the number of queries in-
creases, the transferability also increases, and both our trans-
ferability and accuracy are higher than PRADA. In 150, 200,
and 300 queries, DRMI under LeNet-5 model all increase 3%
accuracy than PRADA, and our attack success rates achieve
68%, 69%, and 70%, respectively, and increase 39%, 38%,
and 30% than PRADA. Under 600 queries, our targeted AEs
attack success rate is as high as 72%, 23 percentages higher
than PRADA. In PRADA, the transferability reaches 64.64%
under 3,200 queries. Even though the attacker only has a very
small dataset (only 1,000 samples), DRMI still raises 20%,
25%, 21% in transferability, outperforming PRADA under
50, 150, 300 queries, and also has a better model accuracy.
DRMI of LeNet-5(1,000) also raises 15.40%, 8.88%, 6.13%,
4.76%, 4.50% model accuracy and 23.62%, 27.45%, 29.90%,
27.70%, 26.74% attack success rate under 50, 150, 200, 300,
600 queries than Practical [45], respectively.

Among these model structures, the C3F2 model has a



higher attack success rate than LeNet-5 in most cases except
50 queries. With 50 queries, C3F2 reaches 48.80% transfer-
ability, two times as much as PRADA, but lower than LeNet-5.
While with 150 and 200 queries, the success rate of C3F2 is
slightly higher than that of LeNet-5, nearly 70%. Until 300
and 600 queries, C3F2 model reaches 76.37% and 78.51%
transferability, both nearly 7 percentages higher than LeNet-
5, and almost 30 percentages higher than PRADA with 600
queries. Results are affected by the model’s complexity since
C3F2 has one more convolutional layer than LeNet-5.

Remark: 1) Transferability increases as the query num-
ber increases. 2) Larger ε helps transferability of AEs to a
certain extent. 3) More complex model structure has better
transferability.

Figure 4 shows the confusion matrices of targeted AEs
attacking target model with structure LeNet-5 under 50 and
600 queries. The value in i-th row, j-th column represents
the number of samples whose original label is i and which is
classified into j. The diagonal elements are failed attack num-
bers. Other elements are succeeded attack samples. Lighter
color means larger value. As we can see in 50 queries, the
(2,2) element is the lightest, which means many adversarial
samples generated by images of label 2 did not succeed in the
attack. Although the total attack success rate is 66% under 50
queries, the success rate is 36.4% for label 2. In 600 queries,
we improve this situation. The (2,2) element turns darker and
the success rate reaches 57.0% for label 2. In Figure 5, we can
see the confusion matrices of targeted AEs attacking C3F2
under 150 and 600 queries. It achieves 69.6% accuracy at 150
queries, but AEs from different labels also have very different
transferability. Label 2 still performs worst, its attack success
rate is 44.8%. Label 3, 5, 7 also perform not well. Label 1
attacks best, whose AEs achieve 95.4% attack success rate.
Confusion matrix under 600 queries contains a higher success
rate of 78.5%. The (2,2) element is not so bright as in 150
queries. The attack success rate of label 2 achieves 53.9%.
Label 1 also attacks best with 97.9% success rate. We can
find that adversarial samples of label 2 are the most difficult
to attack successfully. For other labels, we can intuitively feel
that our attack success rate is high.

Remark: Different labels have different attack success rates
of AEs. This is because different category has different bound-
aries, causing different density of AEs. This phenomenon is
ubiquitous and does not affect the results, where the success
rate is averaged on all labels.

We also generated untargeted adversarial examples to at-
tack the target model, and compare with the state-of-the-art
Gradient Estimation (GE) [7] in Table 9. GE queries the target
model for 196 times and utilizes the acquired information to
generate 1,000 untargeted AEs in 11s. These AEs achieve a
61.5% attack success rate on the target model. In DRMI, we
use 150 queries to generate 1,000 untargeted AEs in 2 min-
utes. We achieve 71.3% success rate on LeNet-5 and 73.2%
on C3F2. Our DRMI still improves the attack success rate by

Table 9: Attack success rates of untargeted AEs between
DRMI and Gradient Estimation [7] on the MNIST dataset.
We set ε (max perturbation) as 0.3, and test the success rate
of 1,000 untargeted AEs for each experiment.

Method Attack Success Queries Time per AE(s)

Gradient Estimation [7] 61.5% 196 0.011
DRMI on LeNet-5 71.3% 150 0.126

DRMI on C3F2 73.2% 150 0.113

Table 10: Attack success rates of untargeted AEs on the Ima-
geNet dataset. We set perturbation ε as

√
0.001 ·D, and D is

the input dimension (≈ 270,000) [48].

Method Attack Success Queries

NES [25] 95.5% 1718

AutoZoom [59] 85.4% 2443

P-RGF [11] 96.5% 1119

DRMI 96.6% 1100

11.7% than GE with even 46 fewer queries. The extra time
is affordable. We can generate an AE in only about 0.12s.
This comparison shows DRMI also performs effectively in a
untargeted attack. Moreover, we perform untargeted attacks
on the ImageNet dataset using Inception-v3 as shown in Ta-
ble 10. One thousand images are randomly selected from the
test set for evaluation. This experiment adopts the PGD [37]
attack under L2-norm. Results show that DRMI outperforms
NES [25] and AutoZoom [59], and has similar performance
with P-RGF [11].

Remark: Through these experiments, our substitute mod-
els have achieved a higher transferability with fewer queries,
outperforming the state-of-the-art approaches. It proves that
our substitute models generated by DRMI can accurately im-
itate the decision boundaries of the target model, and thereby
facilitate black-box attacks (e.g., adversarial attacks) against
deep learning.

5.4 Interpretability of Data Reduction
Training data can be reduced without losing too much ac-
curacy, which implies the existence of redundancy in data.
Therefore, data reduction can be regarded as redundancy elim-
inating. To answer RQ3, we implement another three metrics
to measure data redundancy: correlation matrix, class proba-
bility of prediction, and trace of activated neurons. With these
metrics, we evaluate their effectiveness in the same manner,
and provide a number of insights on interpretability.

5.4.1 CMAL: Correlation Matrix

Correlation matrix reflects the overall correlation among
data samples, and is a measure of data polymerization as a
whole [65]. For a data point x = [x1,x2, ...,xn]

T, its correlation



Table 11: Comparison between CMAL and DRMI on the
MNIST dataset.

Method Dataset Size Test Accuracy Test Loss Epoch

CMAL 600 (1%) 90.16% 0.6071 30
DRMI 600 (1%) 96.41% 0.1961 30

CMAL 300 (0.5%) 89.81% 0.5392 20
DRMI 300 (0.5%) 94.14% 0.2475 20

CMAL 150 (0.25%) 83.32% 0.7078 15
DRMI 150 (0.25%) 92.13% 0.2604 15

Table 12: Effectiveness with class probability on MNIST.
LCP means that data has low class probability, and the model
classifies it correctly with low confidence.

Method Dataset Size Test Accuracy Test Loss Epoch

HCP 600 (1%) 90.96% 0.5288 26
LCP 600 (1%) 77.59% 0.8068 13

K-Means 600 (1%) 93.53% 0.3439 30
PCA + K-Means 600 (1%) 91.72% 0.4289 30

DRMI 600 (1%) 96.41% 0.1961 30

K-Means 300 (0.5%) 88.45% 0.6852 30
PCA + K-Means 300 (0.5%) 88.05% 0.5923 30

DRMI 300 (0.5%) 94.14% 0.2475 20

K-Means 150 (0.25%) 79.82% 1.1851 30
PCA + K-Means 150 (0.25%) 80.31% 0.6033 30

DRMI 150 (0.25%) 92.13% 0.2604 15

matrix is xxT. For a dataset Xm = [x1,x2, ...,xm], its corela-
tion matrix is R(Xm) = XmXT

m/m. CMAL selects a simplified
dataset S from the whole dataset D which minimizes the value
||R(S)−R(D)||2. CMAL tends to extract standard, moderate,
and average-performing samples, rather than independent, di-
verse, and representative ones. We implement the correlation
matching based active learning (CMAL) [65] and compare its
performance with our approach.

In Table 11, we adopt a LeNet-5 model to evaluate the
accuracy and loss value of the DRMI and CMAL methods.
We find that our method performs much better (i.e., higher ac-
curacy yet lower loss) than CMAL in all dataset sizes. DRMI
increases 6%, 5%, and 9% accuracy on 600, 300, and 150
dataset sizes than CMAL, respectively.

Remark: According to our investigation, the reason why
CMAL performs worse is that this sampling is prone to choos-
ing more averaged than diverse data. Although the selected
data follows a similar distribution with the whole dataset, the
model cannot learn distinctive features from them and thereby
performs under our exceptions. As a result, it proves that the
correlation matrix based reduction likely removes distinctions
that could degrade the performance of data reduction.

5.4.2 CPB: Class Probability of Prediction

High class probability (hereafter referred to as HCP) of data
indicates that the model classifies it correctly with high con-
fidence. In our experiments, HCP data points are first sorted

0 10 20 30 40 50 60 70 80 90 100
Percentage of high class probability data (%)

85

87

89

91

93

95

Ac
cu

ra
cy

 o
f s

ub
st

itu
te

 m
od

el
 (%

)

Figure 6: The effect of high class probability data on the
accuracy of substitute models.

in order of confidence scores of the correct class from high
to low, and then selected in order until filling the simplified
training set of fixed size. In our general cognition, the data
with higher class probabilities during the testing process can
reflect the logical relationship with the target model much
better. In [42], they also use class probability returned by
the target model as a measure. Here we are eager to verify
more directly whether HCP data is more useful for training
substitute models.

In Figure 6, the gray dotted line is the model accuracy from
a randomly reduced dataset, and x-axis is the percentage of
HCP data. For a dataset with randomly selected 600 samples,
we start to replace a portion (10% ∼ 100%) of data with HCP
and observe the impact of HCP data on the accuracy of the
substitute model. We find that the increase of HCP data does
not raise the accuracy of the substitute model, but lowers it
down slightly. It shows that HCP data does not contribute
more than random data for training substitute models.

Furthermore, we try to categorize data based on class proba-
bilities by K-Means clustering. We treat prediction confidence
scores after the softmax layer as feature vectors, use L2 to mea-
sure the distance between two points, and perform K-Means
to form k independent clusters. For each cluster, we select the
data that is nearest to the centroid, and finally obtain a reduced
dataset with k samples. In Table 12, we test K-Means on vary-
ing sizes from 150 to 600, which performs worse than DRMI
with decreasing the accuracy by 2.9%, 5.7%, and 12.3% on
sizes 600, 300, and 150, respectively.

Remark: We investigated the formed k clusters and finally
selected samples in the experiment to explain its unsatisfied
performance. We find that the selected samples are more
likely to be picked at random, seriously deviating from our
expectations. It is due to the features of high-dimensional
data: the points (under this context) in the high-dimensional
space have nearly equal euclidean distances between each
other. Therefore, K-Means cannot effectively separate these



Table 13: Effectiveness using activated neurons trace informa-
tion under 600 dataset size. In Target, “MIN” means we find
the minimum hamming distance sum, while “MAX” refers to
the maximum hamming distance sum.

Method Target Initial Solu. Test Acc. Test Loss Epoch

TRACE MIN min-sum 67.21% 2.3855 15
TRACE MIN min-max 60.53% 3.3914 15
TRACE MAX min-sum 79.10% 0.9326 15
TRACE MAX min-max 72.67% 1.6328 15
DRMI - - 96.41% 0.1961 30

samples. It reveals class probability has been pruned with the
diversity in euclidean space.

To solve the curse of dimensionality, we apply a principal
components analysis (PCA) before K-Means. However, it
still brings no noticeable improvement in Table 12. The CPB
method, even with PCA, fails largely due to the deep trans-
formation from input to output by DNNs. As claimed in [54],
the original data features fade away but the essential features
for abstract outputs remain and get enhanced during training.
Data redundancy is apparently discarded in the course, so that
using class probability can only tell how different of their
predictions but definitely not the input data.

5.4.3 TRACE: Trace of Activated Neurons

DNN is one kind of data model which transforms a sort of data
into another. Generally, there are scattering lots of neurons
internally to accomplish the transformation. When a data
sample enters the model, it will activate a number of neurons,
and then reach the final result. As such, it leaves a trace during
passing through the deep learning model. This kind of traces
have been employed for multiple purposes [46, 52]. Here we
explore whether it is suitable for measuring data redundancy.

For simplicity, we use M = (Li), i < n to denote a n-
layer DNN, where Li is i-th layer in the model. For each
layer, there may be varying numbers of neurons. We define
Li = (si

1,s
i
2, ...s

i
m) as the i-th layer with m neurons, and si

j de-
notes the activation state of neurons. If the current neuron
is activated, the value of si

j is 1, otherwise 0. Hence Li is a
binary string of length m, and m is the neuron number in the
i-th layer. We assume Tr is a binary string of length l, and
l is the total number of neurons in the model. Binary string
Tra represents the activated neurons path for data a. Then we
calculate the Hamming distance (performing an xor opera-
tion on two strings and counting the number of “1”s in the
result) of Tra and Trb, to represent the distance of data a and
b. Then we replace the MI matrix with the Hamming distance
as follows:

I[a][b] = Hamming(Tra)(Trb) (11)

Finally, we adopt Algorithm 1 to obtain a simplified dataset.
Here we try two directions–smallest and largest Hamming
distance sets. In Table 13, we test TRACE methods under 600
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Figure 7: The box-plot of the proportion of activated neurons
in all data. The ordinate is the proportion of activated neurons.

samples. All of TRACE methods perform worse than DRMI,
decreasing 17.3% to 35.9% accuracy. In TRACE, we find
“MAX” target performs better than “MIN” target, increasing
11.89% in min-sum and 12.14% in min-max initial solution.
This indicates the set with larger hamming distance has better
effect. We need to make traces of activated neurons more
diverse and cover as more neurons as possible.

In order to study why activation traces could not filter out
a good simplified training dataset, we analyze the distribution
of the proportion of activated neurons and draw a box-plot
in Figure 7. The proportions are almost all concentrated at
[0.313,0.515], within a small interval. Even 50% data acti-
vated neurons proportions are concentrated at [0.387,0.438],
a very small interval. This may be the cause of poor perfor-
mance to select data through the activation neuron trace.

Remark: The TRACE method by considering the Hamming
distance between activated neurons traces performs worse
than DRMI. The proportions of activated neurons in all pre-
dicted samples are almost concentrated in a small interval.

6 Related Work

There has been a line of related research described as below.
Black-box Attacks. Many black-box attacks (e.g., adversar-
ial attacks) need to train a substitute model [29, 44, 45]. Tech-
niques have been developed to reduce queries as much as pos-
sible. Papernot et al. [44] adopted reservoir sampling method
and successfully reverse-engineered two machine learning
classification systems. In order to reduce the query number,
Papernot et al. [45] adopted Jacobian-based dataset augmen-
tation (JbDA) to create synthetic data for training DNNs
on MNIST. Based on JbDA, Juuti et al. [29] proposed Jb-
topk and Jb-self methods to synthesize samples for substitute
model training. Differently, DRMI relies on data reduction
from a large dataset for querying. But PRADA augments data
locally for training that may induce wrongly labeled data.
Through the experiments in Section 5.2, it proves DRMI can



achieve more accurate substitute models using the same or
fewer queries. Orekondy et al. [42] stole the functionality of
target models by querying. They use three metrics to choose
images: images with higher class probabilities, images with
diverse labels, and images which imitates badly. According
to our results, the sole selection of images with higher class
probabilities cannot augment accuracy of the trained model.

Jagielski et al. [26] propose a learning-based extraction
method using semi-supervised learning techniques: rotation
loss and MixMatch. For adversarial capabilities, they need
both labels and scores from the original model, while DRMI
only needs labels. Their adversary has access to the same
training set without labels, but DRMI does not need the exact
training data. They can save the query costs because much
unlabeled data does not need to be queried in semi-supervised
learning. Based on this analysis, we can incorporate their
method into ours in future: use DRMI to select the query data
for fully supervised learning, and perform semi-supervised
learning on the remaining unlabeled data.
Data reduction. Eschrich et al. [17] reduced the amount
of clustering data by aggregating similar samples and using
weighted samples. Ougiaroglou et al. [43] reduced data in
clustering by producing homogeneous clusters. It reduced
storage requirements and had low pre-processing cost. Chou-
vatut et al. [13] proposed a graph-based optimum-path forest
to reduce the size of training sets. They utilized the segmented
least square algorithm to estimate the tree’s shape. In DNNs,
Zheng et al. [65] proposed a correlation matching based ac-
tive learning technique to label the most informative data and
simplify the dataset. We implemented it in our experiments
for a comparison. Results show DRMI performs remarkably
better than it in CNNs. Katharopoulos et al. [31] found that
not all samples in the training phase are equal. Hence, they
adopted importance sampling to identify informative exam-
ples, which can reduce the variance of a SGD process. DRMI
aims to reduce the queries and the reduction can be completed
before training, therefore, DRMI is model-independent, i.e.,
not affected by model structures and training processes.

7 Discussion

Effectiveness of DRMI. In this study, we use mutual infor-
mation to measure the data redundancy of a dataset, and then
find a subset to minimize the summed mutual information.
As claimed in Section 4.2, the problem is NP-Complete and
cannot be solved in polynomial time. Therefore, we propose
DRMI to solve the intractableness. Its effectiveness is twofold.
On one hand, DRMI can find an approximate optimal solution
by enumerating the starting point (Algorithm 1) and filling an
initial subset for representative data (Algorithm 2) to avoid
the trap of local optimum. On the other hand, one-hot re-
placement (Algorithm 3) replaces the vertices that incur large
mutual information and identify the optimal solution in the
current setting. Based on the complexity analysis for each

algorithm at Section 4.3, the overall complexity of DRMI is
O(kn2), which can be further optimized to O(kn logn) with
more efficient sorting algorithms. It is also confirmed by the
experiments on three diverse and large-scale datasets.
Parameter Choice (α, ε). α is used to tune the variable rela-
tionship between mutual information and data redundancy. It
indicates a linear relationship if α = 1. Moreover, we explore
whether there are non-linear relationships by augmenting α

to 2 and 4. The results in Table 3 and 7 show the increase
of α (from 2 to 4) hardly improves accuracy, but the extra
overhead caused by exponent computation cannot be offset
by accuracy gains. Similarly, it is experimentally confirmed
that this principle also applies to the other datasets CIFAR10
and ImageNet. As for the max perturbation ε, it reflects the
balance between attack effect and imperceptibility of AEs.
Larger ε can raise the attack effect, but reduce the impercepti-
bility. For ease of comparison, we set ε = 0.3 for untargeted
AEs, consistent with [7] and ε = 0.5 for targeted AEs on the
MNIST dataset. It is because targeted AEs usually need larger
perturbations for generation, and the value is also aligned
to PRADA. Inspired by [11], we set ε =

√
0.001 ·D on the

ImageNet dataset, and D is the input dimension (≈ 270,000).
Robustness of DRMI. There is a line of work to defend such
black-box attacks. For instance, [58] proposes a number of
strategies to prevent model stealing, including rounding confi-
dence scores, providing fake or no class probability. However,
we show that DRMI is still effective without class probability
in Section 5.2, making this defense ineffective. PRADA [29]
also proposes a defensive method by detecting abrupt changes
in the distribution of queried samples. It detects PRADA’s
attack after 100 queries on MNIST. We re-implement this
method to detect DRMI. In our experiments, we assume that
normal users submit random queries, which reduces the detec-
tion difficulty. Through our results, DRMI can successfully
create a high quality substitute model after only a few hundred
queries on MNIST, while it takes about 32,000 queries for
PRADA to detect our attack. So PRADA is not effective at
stopping our attack. Our queries are not easily detected by
AEs detection methods, such as adversarial training, defen-
sive distillation, and input transformation [20]. Because our
queried samples contain no adversarial perturbations. In addi-
tion, we use mainstream methods (e.g., PGD [37]) to generate
AEs. Although they are likely to be detected by defensive
methods like [20], it is not the concern of this study.

One possible defense is to measure the redundancy of
queries from one client, just alike DRMI. Generally, the
queries of DRMI have a much smaller MI value compared to
the normal samples of the same number, since normal data
have relatively more repetitions. However, this method needs
to count many queries and establish a distribution of MI val-
ues. In our test, the defender needs to have more than 100
times malicious queries for detection. It inevitably brings
huge computational cost. Additionally, this defense becomes
more infeasible in front of distributed queryings.



8 Conclusion

This paper proposes a novel dataset reduction technology
based on mutual information DRMI, which can be used in
black-box attacks. With this approach, we can accurately mea-
sure the overall quality of dataset, identifying redundancies
and repetitions therein. Compared with other three techniques,
it proves that our approach achieves the best performance in
the selection of representative and distinct data for DNN train-
ing. Moreover, we apply DRMI to reduce queries in model
extraction and adversarial attacks. The results show a superior
ability of DRMI in data reduction while maintaining a high
model accuracy and transferability of adversarial examples.
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