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Abstract

With the increasing adoption of deep learning (DL) in various
applications, developers often reuse models by, for example,
performing model conversion among frameworks to raise pro-
ductivity. However, security bugs in model conversion may
make models behave differently across DL frameworks, and
cause unpredictable errors. Prior studies primarily focus on
the security of individual DL frameworks, but few of them
can cope with the inconsistencies and security bugs during
cross-framework conversion. Furthermore, the impact of these
issues on DL applications remains largely unexplored. To this
end, we propose TENSORSCOPE, a novel approach to test
cross-framework APIs for security bugs. It takes as input a
number of counterpart APIs that are supposed to be equivalent
in functionality, then performs differential testing to identify
the inconsistencies. We design novel strategies to boost test-
ing efficiency, including 1) joint constraint analysis to raise
the quality of test cases, and 2) error-guided test case fixing
to refine the constraints for input. TENSORSCOPE is exten-
sively evaluated on 1,658 APIs of six popular DL frameworks.
The results show that TENSORSCOPE is more effective than
FreeFuzz and DocTer by raising 28.7% and 24.3% code cov-
erage, respectively. We find 257 bugs including 230 new bugs,
and receive 8 CVEs and $1,100+ bounty with developers’ ac-
knowledgment. Most importantly, we make the first attempt
to exploit these inconsistencies to make the accuracy of three
models reduced by at most 3.5%.

1 Introduction

Deep learning is deployed in more and more real-world sce-
narios, such as image classification [43], face recognition [2]
and autonomous vehicles [79]. Well known for its algorithmic
weaknesses, researchers have extensively studied adversarial
attack [65], model inversion attack [18], backdoor attack [10],
etc. Recent studies [74, 83, 86] show that deep learning is
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also under threat of vulnerabilities in its underlying frame-
works like TensorFlow and PyTorch. These vulnerabilities
can either crash the execution of DL models, change the pre-
diction results or even compromise the host machine of DL
systems. Therefore, a secure framework is indispensable for
the development and deployment of deep learning.

There is a surge of research on testing DL frameworks [14,
28, 57, 81]. DL frameworks receive neural networks as input
and perform interpretation and optimization. Hence, stud-
ies [28, 80, 81] propose model-level testing approaches to
evolve and mutate DL models, and then feed them to the
frameworks, seeking for implementation bugs. However, it
shows that model-level approaches [14, 82, 84] are limited in
code coverage and can only find bugs triggered by neural net-
works. Therefore, API-level testing has drawn attention and
significantly improved the efficiency of bug finding, where
DL framework APIs are directly tested with specific cases.

It is worth noting that most of the prior works are targeting
a single framework. However, the cross-platform deployment
of DL models is gaining momentum since it can greatly widen
the applicable scenarios. Many frameworks have their own
converters for a handy switch with other frameworks, and
open standards are also developed to ensure interoperability.
In recent years, hundreds and thousands of issues related to
cross-framework model conversion are raised in various DL
framework repositories [24, 53]. Inconsistencies are more
likely to arise when adapting a DL model to a new framework.
Simply put, given one image, the classification model M
can correctly recognize as l with confidence c. After being
converted to model M ′ on another framework, it may only
give a lower confidence c′ (i.e., c′ ≤ c) or even a wrong label l′

(i.e., l′ ̸= l). It motivates us to conduct research on identifying
inconsistencies during cross-platform model deployment and
explore how these inconsistencies affect model inference.
Challenges. In this study, we concentrate on testing cross-
framework APIs. To achieve this goal, we have to solve the
following challenges.

(1) How to extract the constraints of API parameters and
their implicit dependencies? Obtaining accurate constraints



for API parameters can benefit test case generation and im-
prove testing efficiency. However, APIs may have semantic
dependencies, serving as implicit constraints that cannot be
extracted from API documents. Take the operator “tf.raw_ops
.BatchMatMulV3(x,y,Tout,adj_x,adj_y,name)” in TensorFlow
for example [76]. Besides that x and y are supposed to be of
specific data types, the last dimension of x and the second
last dimension of y should have the same size. This depen-
dency is not described in the documentation, but without it,
the majority of generated inputs are invalid.

(2) How to generate representative test cases to find bugs
more effectively? It is non-trivial to generate high-quality test
cases, especially corner cases, for a framework API, consider-
ing that the complex calling relations between APIs and the
large value range of parameters. Traditional program analysis
techniques like symbolic execution [7] and value range analy-
sis [62] cannot be directly applied in this scenario. Moreover,
code coverage is not effective in guiding the testing when a
bug is only triggered by a specific value. That necessitates
new indicators for measuring program states and providing
meaningful feedback.

(3) How to evaluate the hazards of the bugs and their ex-
ploitability in real-world scenarios? Generally, operator APIs
are well-encapsulated in DL frameworks and do not allow
users to invoke directly. To exploit the bugs, attackers, in
most cases, have to craft a specific model as input for DL
frameworks. It brings a new intractable problem to determine
whether the bug is reachable via this model. As a consequence,
it is unclear what hazards the bugs can cause and their ex-
ploitability. To the best of our knowledge, there is no prior
research on the systematic analysis of this problem.

Our Approach. To address the above challenges, we design
a differential testing method for detecting inconsistency bugs
of APIs across six DL frameworks. First, we prepare for in-
consistency checking by extracting the counterpart APIs as
test objects, by analyzing the equivalence conversion rules
in each model converter (see Section 3.1). The conversion
rules not only reveal the names of counterpart APIs in differ-
ent frameworks, but also indicate the correspondence of API
parameters. Then we extract the parameter constraints from
both API profiles and implementations. From the API profiles,
we are able to obtain constraints like supported types of each
parameter and value ranges. From the code, we leverage static
analysis to extract assertions and error-handling information
that can help extract parameter dependencies mentioned in
the first challenge. Moreover, the constraints are further re-
fined if the program under test exits with an error message,
for example, indicating a more accurate value range. Mean-
while, we collect all the constraints for counterpart APIs and
make a joint analysis. To be specific, the intersection of con-
straints allows us to further narrow down the test scope and
reach deeper code. The differences among constraints provide
a higher chance to identify the value boundaries as well as
corner cases that incur bugs (see Section 3.2). Last, we use

three models in reality that are affected by buggy conversion
and evaluate the hazards of the found bugs. Additionally, we
implement a proof-of-concept attack, exploiting the bugs and
quantifying their hazards (see Section 5.3).

We have evaluated TENSORSCOPE on 1,658 counterpart
APIs extracted from six DL frameworks. The results show that
TENSORSCOPE identifies 17,574 constraints, raising 24.7%
compared to DocTer [84]. Meanwhile, TENSORSCOPE in-
creases 54.5% code coverage compared to the well-known
fuzzer Atheris [23], 28.7% to FreeFuzz [82], 24.3% to Doc-
Ter [84]. A total of 257 bugs are found, including 80 non-crash
bugs and 177 crash bugs. All these bugs are recognized by de-
velopers, and 8 CVEs are obtained. The crash bugs are mainly
distributed in segmentation fault (81.9%), floating point ex-
ception (7.9%), and abort (10.2%). We also conduct a man-
ual inspection of these non-crash bugs and identify that the
inconsistency bugs fall into three main categories: precision
bugs (57.5%), data layout bugs (8.7%), and special value bugs
(33.8%). In terms of bug hazard analysis, we demonstrate po-
tential exploitation scenarios of these cross-framework bugs
by model converters that decrease the accuracy of the three
models by 2.3%-3.5%.
Contributions. We make the following contributions.

• Mapping. We review the conversion rules in the existing
model converters and analyze the parameter mapping infor-
mation of the counterpart API between frameworks. This
information could be provided to framework developers for
standardizing the design of framework APIs and providing
users with more secure and effective interoperability when
deploying models between different frameworks.

• Testing method. We propose a differential testing approach
based on joint constraints and error message guidance,
and implement a testing tool called TENSORSCOPE. This
method combines different constraint information from mul-
tiple frameworks implementing the same functional API
to generate test cases more efficiently. The approach helps
testers find API implementation problems faster than with
single framework testing.

• Testing results. We find 257 bugs, 230 are newly found and
all of them are confirmed by the community and result in
8 CVEs. Furthermore, we perform a flawed model conver-
sion on 3 models to show the possibility of doing attacks
against inter-framework inconsistency problems with more
practical and stealthy attack scenarios.

2 Background & Problem Statement

2.1 Deep Learning Framework
Deep learning frameworks like TensorFlow(Lite) [20] and Py-
Torch [52] have greatly propelled the development and deploy-
ment of DL applications. These frameworks provide handy



APIs for acquiring data, training models, serving predictions,
and enhancing maintainability. Famous for their computation
functions like data manipulation and automatic differentia-
tion, developers can put more effort into the model design
and training configuration. We categorize these APIs into two
classes: core APIs that build the blocks of DL models. They
are responsible for mathematical computations (e.g., matrix
multiplication, gradient calculation), model optimization (e.g.,
parallelization) and cross-platform deployment (e.g., cloud
server, IoT devices); interface APIs that wrap core APIs and
can be used directly by users. For example, TensorFlow pro-
vides multiple-language support including Python, Javascript,
C++, and Java. These interface APIs usually invoke core APIs,
e.g., the tf.nn.conv2d Python API calls Conv2D C++ kernel
through Python bindings.
Computational Graph. To ease the process of model training,
DL frameworks propose the computational graph to describe
how data flows and is computed. More formally, a computa-
tional graph G = (N,E) is a directed acyclic graph, where the
set of nodes N represents either operators or variables and E
represents the flow of tensors between two nodes. Variables
are a type of placeholder for persisting data that are often
depicted as tensors. For simplicity, we refer to variables as
tensors in this study. Tensors are multi-dimensional arrays
and are depicted with dimensional information and data type
(dtype). For example, <tf.Tensor:shape=(2,3),dtype=float64,
...> shows a tensor with a 2 × 3 matrix, its rank is 2 and its
cell data is of float64. An operator is a basic unit for com-
putation that takes as input a list of tensors and outputs the
computation result. For example, tf.math.add shows an arith-
metic calculation of element-wise addition that receives as
input x and outputs y. Generally, the input needs to meet the
requirements of “x.dtype==y.dtype” which are referred to as
constraints.

2.2 Cross-framework Model Conversion

Recently, cross-framework model conversion gains its mo-
mentum due to the increasing need for interoperability [48].
It is the process of transforming a DL model from one frame-
work format to another. On one hand, it is widely used in
cross-framework deployment due to agile development and
MLops [46]. Developers with TensorFlow experience can
easily reuse PyTorch models with automatic converters. Con-
sidering this benefit of cross-framework conversion, many
DL frameworks have implemented their own converters, sup-
porting a smooth conversion to other popular frameworks.
Additionally, ONNX [60] is developed with the purpose of
model generalizability, which is an open standard for DL inter-
operability. It supports the conversion of many DL framework
models into its own format, unifying the representation of
models across different frameworks. Besides serving as the in-
termediate model, ONNX has its own inference engine named
ONNXRuntime (ORT). Therefore, models in TensorFlow or

PyTorch can be converted into ONNX and executed by ORT.
On the other hand, model conversion serves as an opti-

mization for various deployment scenarios. For example, Ten-
sorFlow Lite is a lightweight framework for deploying DL
models on mobile and edge devices. Models developed on
TensorFlow are usually converted to semantic-equivalent mod-
els in the file format of TensorFlow Lite before deployment
on edge devices. Compared to the format in TensorFlow (i.e.,
protocol buffers), the model format in TensorFlow Lite (iden-
tified by flat buffers) is much more efficient in disk usage and
model deserialization, especially for edge-device deployment.
New Threats. Bugs and vulnerabilities in DL frameworks
have drawn researchers’ attention in the past few years. Ac-
cording to the statistics of the CVE website, the number of
vulnerabilities in TensorFlow is on the rise year by year [55].
In 2022, the TensorFlow framework has three times more
memory corruption and bypass restriction vulnerabilities than
the previous year. Therefore, uncovering and addressing these
security issues is important to improve the security of deep
learning applications. Even worse, the handy switch between
different frameworks on top of model converters can further
amplify the threat of these issues. It is non-trivial to imple-
ment a converter between two frameworks since 1) the quick
evolution of DL frameworks makes converters more likely to
be incompatible and acquires continuous efforts to follow the
latest frameworks; 2) there may be no equivalent operators
between two frameworks so that converters have to make
an approximation to the target operator. These difficulties of
DL framework and converter in implementation inevitably
involve many bugs or even vulnerabilities, which are our main
target in this study.

2.3 Problem Statement
Here we present an example to show that an equivalent con-
version between different frameworks might induce problems,
identified as inconsistent computation results.

1 logits = tf.random.uniform([1,10],
2 dtype=tf.dtypes.half , maxval=100)
3 op = tf.raw_ops.LogSoftmax(logits=logits)
4 tf_model = wrap_model(op)
5 tf_res = tf_model.run()
6 onnx_model = tf2onnx(tf_model)
7

8 pt_model = onnx2pytorch(onnx_model)
9 pt_res = torch_model.run()

10

11 np.testing.assert_allclose(tf_res , pt_res ,
rtol=1e-4, atol=1e-4)

12 # Mismatched elements: 9 / 10 (90%)
13 # Max absolute difference: 0.03884888
14 # Max relative difference: 0.00053648

Listing 1: Inconsistent results of equivalent conversion
between TensorFlow and PyTorch

Motivation Example. As shown in Listing 1, the code first



builds a TensorFlow model containing a Logsoftmax oper-
ator (line 4). Then the model is converted into the ONNX
format by converter tf2onnx (line 6), and further converted
into PyTorch by converter onnx2pytorch (line 8). For a given
random input parameter logits, the results of the TensorFlow
model and the PyTorch model show a large difference that
exceeds the reasonable error threshold 1×10−4 (line 11). The
root cause is that when the onnx2pytorch converter does the
model conversion, it converts the data type of the operator
from float16 to float64. When large logits are encountered,
the two sides produce inconsistent computation results. Since
this operator is often used in the last layer of the model, its
error can significantly affect the quality of inference results.

Moreover, we investigate the current inconsistency issues
from a more comprehensive perspective. We search from mul-
tiple framework repositories the inconsistency issues with
some keywords like “inconsistent”, “inconsistency”, “not con-
sistent”. We compile five reasons for how these inconsisten-
cies occur as follows:

1. Incorrect usage of APIs. Developers may wrongly use
specific APIs, leading to errors. For example, as shown in
Listing 6, when passing the same parameters, the results
of LRNGrad operators are inconsistent between CPU and
GPU. That is, the gradient calculation results of the local
response normalization (LRN) [44] are different. How-
ever, in reality, the developer claims that it is reasonable
for CPU and GPU to return different gradients if the user
passes invalid values to output_image and output_image
must be the correct forward-pass output given input_image,
i.e., output_img should be the result of LRN processing
of the input_img. If a user passes an invalid value for out-
put_image, the API will return unexpected values.

2. Incompatible versioning. Many inconsistencies are
caused by using obsoleted APIs [75]. As DL frameworks
are evolving and iterating, their APIs are also inconstantly
changed or even deprecated. The semantic differences
across versions are eventually reflected in the differences
in runtime results.

3. Differences in dependency libraries. This inconsistency
is caused by numerical instability of dependent numerical
libraries, e.g., Eigen [27] in C++, Numpy [29] in Python.
This inconsistency is more difficult to troubleshoot1.

4. Different Implementations. Since an operator has differ-
ent implementations and optimizations on different plat-
forms and hardware, e.g., “a*b/N” on CPU but “a/N*b” on
GPU, they have different computational order, which leads
to different loss of precision and finally inconsistent re-
sults2. This may not be an implementation error, but we
cannot avoid this kind of corner case.

1 https://github.com/tensorflow/tensorflow/issues/30995
2 https://github.com/pytorch/pytorch/issues/87657
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5. Inconsistent model conversion. To ease the switch among
frameworks, each DL framework may offer handy APIs for
automatic conversion. For example, PyTorch provides spe-
cific APIs for converting its model to ONNX, and ONNX
is also equipped with conversion functions. These convert-
ers are found with logical errors, leading to inconsistencies
between runtime frameworks.

This study focuses on the inconsistency of different DL
frameworks in implementation. We aim to identify these is-
sues through differential testing and then unveil what impact
these issues can bring after model deployment. Here we only
consider the last two types of inconsistencies since they stem
from the incorrect implementation while the first three types
are more related to developers’ bad practices.

3 Approach

As depicted in Figure 1, we devise a differential testing ap-
proach with novel joint constraint analysis and error-guided
testing optimization. It is divided into four steps: counter-
parts extraction, constraint extraction, test case generation,
and optimization.

In counterparts extraction, we extract the cross-framework
counterpart APIs by identifying conversion rules from model
converters. One API may have its counterpart with a single
API or a composition of multiple APIs in another framework.
To facilitate comparison, TENSORSCOPE automatically wraps
them into computational graphs, from which TENSORSCOPE
can learn parameter correspondence for these counterpart
APIs (see Section 3.1). In constraint extraction, we construct
constraints for API parameters from both API profiles and
implementation. (see Section 3.2). In test case generation,
we perform a joint constraint analysis to refine the scope of
API inputs. Based on that, we utilize an SMT solver to gen-
erate test cases for varying types of data (see Section 3.3).
Finally, we propose two strategies to optimize our testing, i.e.,
error-guided test case fixing and range extension to eliminate
invalid cases dynamically captured during runtime and ex-
plore more input space to increase code coverage, respectively
(see Section 3.4).

https://github.com/tensorflow/tensorflow/issues/30995
https://github.com/pytorch/pytorch/issues/87657


Table 1: Model converters between frameworks. The matrix is not symmetric, e.g., converting from TensorFlow to TensorFlow
Lite by TOCO is different from the backward converter tflite2tf. Additionally, some frameworks cannot be switched directly
unless with an intermediate converter (denoted as italics), e.g., converting PyTorch models to ONNX, then to TensorFlow models.

TensorFlow (TF) TensorFlow Lite (TFL) ORT Mindspore (MS) PyTorch Paddle

TensorFlow [19] - tflite2tf [37] onnx2tf [36] - onnx -
TensorFlow Lite [20] TOCO [21] - openvino - onnx -
ORT [54] tf2onnx [58] tf2onnx - - torch.onnx.export [59] -
Mindspore [34] MindConverter [33] - MindConverter - MindConverter -
PyTorch [52] onnx - onnx2torch [17] - - -
Paddle [5] x2paddle [6] - x2paddle - x2paddle -

3.1 Counterparts Extraction
Cross-framework model conversion assumes that frameworks
share semantically equivalent functions. That is, one API can
be replaced with one or more APIs in other frameworks. Here
we call these equivalent APIs counterparts. In order to identify
the inconsistencies of one model in different frameworks, we
first determine convertible APIs and their counterparts.

Definition 1 Given an API f , its counterpart is either one
single API or a set of APIs, which can be loosely defined
as counterpart( f ) = { f1, . . . , fn}, where fi (1 ≤ i ≤ n) is an
API in another framework and n ≥ 1.

It has the following two properties:

• Semantic equivalence. With input x, the output of f and
{ f1, . . . , fn} should satisfy the following requirement:

∥ f (x)− ( f1 ◦ ...◦ fn)(x)∥ ≤ ε (1)

where ε is a threshold to indicate the minimal distance
between APIs and counterparts.

• Sequentiality. For a multi-API counterpart, the order of
API combination matters, which should be explicitly reg-
ulated during conversion. For example, the counterpart
of “AdjustContrastv2” in TensorFlow is {“Add”, “Mul”,
“Sub”, “ReduceMean”} in ONNX. Its function is to ad-
just the contrast of an image. The combination of these
APIs should be “AdjustContrastv2(x0, x1) = Add(Mul(x1,
Sub(x0, ReduceMean(x0))), ReduceMean(x0))”.

Extracting counterparts across frameworks is challenging
because the independence of each framework means that coun-
terparts are likely to have different names and parameters. To
this end, we propose to first identify candidate APIs as coun-
terparts and then align parameters for validation.

1 registry: Dict[str, handler] =
2 {"onnx::AveragePool": PoolMapper ,
3 "onnx::MaxPool" : PoolMapper , ...}
4 class PoolMapper(ONNXToMindSporeMapper):
5 def _operation_name_in_ms(*args , **kwargs):
6 if kwargs[’op_name’]==’onnx::AveragePool’:
7 op_name = ’nn.AvgPool{}d’
8 else:

9 op_name = ’nn.MaxPool{}d’
10 dim = len(kwargs[’params’][’strides’])
11 if dim == 3:
12 return "P.MaxPool3D"
13 return op_name.format(dim)

Listing 2: Conversion rules and handler of AveragePool and
MaxPool operators in mindconverter

Candidate Identification. We first identify the candidate
counterparts of one target API by parsing the equivalence
conversion rules in each framework. An equivalence con-
version rule is to transform one operator API in the source
framework to the corresponding operator API(s) in the desti-
nation framework. From the 8 converters shown in Table 1,
each converter has a mapping dictionary, also known as a
registry, storing the above conversion rules (see Table 10 in
Appendices B). The key of one registry is a source operator
and the value is the handler for the conversion. As shown in
Listing 2, the framework Mindspore implements its converter
from ONNX in mindconverter. The operators AveragePool
and MaxPool are processed with the handler PoolMapper.
The handler makes conversions according to the name of op-
erators (i.e., op_name) and provided arguments (i.e., dim).
Usually, the call or name of the destination operator API usu-
ally appears in the handler code. So, we build a control flow
graph (CFG) for each handler and carry out a lightweight
context-aware static analysis. From one handler, we trace the
execution paths in its CFG, recording the preconditions. More
specifically, we traverse the CFG and assign the context for
each branch, i.e., in the context of what operator API. If one
or more operators of the destination framework are reached,
we label them as counterparts under certain preconditions.
It is worth noting that this step requires human efforts for
identifying the conversion handler for each converter, but can
be easily adapted to other converters with the marked handler.

Different from DeepREL and EAGLE [80], we focus on
cross-framework counterparts. To improve the test coverage
of the framework code, we also collect the counterparts within
a single framework by using DeepREL. However, our analy-
sis reveals that many of the counterparts found by DeepREL
are the target API’s caller or callee. This phenomenon is very
common in DL frameworks as APIs can be further extended
with more functions or limited with shrunk input space by a
wrapper. For example, the operator linalg.matmul in Tensor-



Flow is the caller of multiple primitive operators, including
MatMul, BatchMatMul, and SparseMatMul. It does not make
considerable contributions to finding real bugs, so we filter
out these counterparts with direct invocation relationships.

Parameters Alignment. Counterpart APIs may have differ-
ent numbers of parameters or the parameters are in different
orders. Thus, we design an automated method to identify pa-
rameter correspondence between counterpart APIs for testing.
We first wrap one side of a single API into a model, denoted
as G1. Then we convert G1 into the other framework accord-
ing to the model conversion rules to obtain G2 (see Figure 2
for example). In this way, we build a pair of computational
graphs that contains counterpart operator APIs. Generally, the
model before and after the conversion does not change the
nature of model inputs, including the shape, type, and order
of the inputs. That is, the in- and out-degrees of the computa-
tional graph remain unchanged. Starting from the same input
parameters in the two computational graphs, TENSORSCOPE
follows the computation flow to locate the target API. It then
observes the position of the parameters that the data is passed
to, thus obtaining the corresponding relationship between the
counterpart API parameters. We use a common parameter list
to describe the common parameters in both counterpart APIs,
PU = {p1, ..., pl} (l is the number of common parameters).
For example, PU = {p1, p2} in Figure 2, p1 corresponds to
the dividend x in TruncateDiv and to the dividend input in
torch.div, p2 corresponds to the divisor y in the former and
to the divisor other in the latter. For the parameters not in
PU , e.g., the extra rounding_mode parameter in torch.div, we
place them in the corresponding difference parameter list.

3.2 Constraint Extraction

To generate more valid test cases and improve code cover-
age, we extract two kinds of constraints for API parameters,
i.e., single-parameter (univariate) constraints Cs and multi-
parameter (multivariate) constraints Cm from API profiles and
implementations. Constraints CF

p are defined on the parame-
ters p of the API of framework F on five attributes, including
type (e.g., tensor, list, tuple), shape, data type (e.g., int, half,
float32), rank (specific for tensor type), and data value. Con-
straints are basically obtained from two sources as follows.

API Profiles. There are API profiles in DL frameworks, de-
scribing the types of parameters for each API. TENSORSCOPE
automatically extracts the type constraints of APIs from their
profiles (usually stored as json or yaml files). Taking the
example in Figure 2, torch.div in PyTorch is the counter-
part of TruncateDiv in TensorFlow. From the profiles, we
can get the names and types of input parameters and out-
puts. As observed, the operator TruncateDiv has two input
parameters x and y of type T . Type T can be many concrete
values like DT_HALF and DT_FLOAT. So we finally extract
Cx.dtype ∈ T, Cy.dtype ∈ T .

1 TORCH_META_FUNC(avg_pool3d) (
2 ..., IntArrayRef kernel_size , ... ) {
3 TORCH_CHECK(kernel_size.size() == 1 ||

kernel_size.size() == 3,
4 "avg_pool3d: kernel_size must be a single

int, or a tuple of three ints"); ...}

Listing 3: Assertion of avg_pool3d operator in PyTorch

API Implementation. In addition to type constraints, we
enrich the constraints by analyzing the statements of sanity
checks in API implementation, e.g., assertions. Assertions de-
fine constraints for API parameters, which hinder invalid test
cases from reaching deep in code. To be specific, assertion
statements (such as OP_REQUIRES and TORCH_CHECK)
that validate inputs can be used as additional constraints. We
summarize them in Table 11 in Appendices C. These state-
ments have a specific syntax format within a DL framework.
We record the position of the predicate expression in each
assertion. For example, OP_REQUIRES is an assertion in Ten-
sorFlow, and its second parameter is a predicate expression,
we parse this expression to an abstract syntax tree (AST). If
the parsed items are the parameters of the current API and all
other items are constants (e.g., int), or Boolean function calls
(e.g., TensorShapeUtils::IsVector), we convert the expression
as a constraint expression. In PyTorch, the first argument in
the TORCH_CHECK macro is a predicate expression, and the
second argument is an error message returned if the expres-
sion results false. TENSORSCOPE extracts the expression as
new constraints for the current parameter, such as “kernel_
size.size()==1||kernel_size.size()==3” in Listing 3, which is
the constraint for the kernel_size parameter of the operator
avg_pool3d. Besides, the constraints in the assertions are not
limited to a single parameter, but also to multiple parameters,
e.g., the dtype of two parameters of TruncateDiv in Figure 2
must satisfy Cx.dtype ==Cy.dtype which means the dtype
of both parameters x and y should be same.

Despite these measures, we may not be able to identify all
the constraints for APIs. Therefore, we further supplement
new ones from runtime errors (see Section 3.4).

3.3 Test Case Generation
After obtaining the constraint list C = {Cs,Cm} for counter-
parts’ parameters, TENSORSCOPE automatically generates
random values for each parameter that satisfy their constraints.
We formulate different generation rules according to the three
types of parameters. ❶ Continuous. We generate random data
using uniform sampling. ❷ Discrete. This type of data has a
limited number of items. So we enumerate each item within
its value domain. ❸ Categorical. This type of data has an
unlimited number of items, e.g., the names of operator APIs.
In this case, we randomly generate data of a specific type with
a fixed length (e.g., 10).
Joint Constraints Analysis. The constraints of counterparts
in different frameworks may be varying, which likely induce



Tensorflow PyTorch

TruncateDiv torch.div

x y input other

z out

op {
  name: "torch.div"
  input_arg {
    name: "input"
    type_attr: "T"}
  input_arg {
    name: "other"
    type_attr: "T"}
  output_arg {
    name: "out"
    type_attr: "T"}
 } 

attr {
  name: "T"
  type: "type"
  allowed_values {
    list {
      type: Tensor
      type: Number}}}

attr {
  name: "rounding_mode"
  type: "str"
  default_value {
    b: None }���}

op {
  name: "TruncateDiv"
  input_arg {
    name: "x"
    type_attr: "T"}
  input_arg {
    name: "y"
    type_attr: "T"}
  output_arg {
    name: "z"
    type_attr: "T"}
}

attr {
  name: "T"
  type: "type"
  allowed_values {
    list {
      type: DT_HALF
      type: DT_FLOAT
      type: DT_DOUBLE
      type: DT_UINT8
      ���}
  }
}G1 G2

Figure 2: Parameter correspondence and constraints for counterpart APIs

inconsistencies. Therefore, we differentiate the constraints
to generate more corner cases for testing. Given one shared
parameter pi in counterparts, we denote its constraints on the
same parameter attribute as CA

pi
in framework A and CB

pi
in

framework B. The intersection of CA
pi

and CB
pi

is computed
as CU

pi
, indicating that the value under these constraints (i.e.,

pi ∼ CU
pi

) are acceptable by both frameworks. As a conse-
quence, the test cases under CU

pi
can reach deeper code. On

the other hand, the differences in constraints between the two
frameworks, i.e., CA

pi
−CB

pi
and CB

pi
−CA

pi
, suggest that the test

cases in this space likely induce inconsistent results. For ex-
ample, “at::cumsum(p1:input,p2:dim,...)” in PyTorch and “t
f.cumsum(p1:x,p2:axis,...)” in TensorFlow are counterpart
APIs. After extracting the constraints, we know that the pa-
rameter p1 in at::cumsum should satisfy CA

p1
that its rank is

in (0,4] and p2 ∈ [−p1.rank, p1.rank). However, the CB
p1

in
TensorFlow are that the parameter p1’s rank is in (0,+∞) and
p2 ∈ [−p1.rank, p1.rank). The details are as follows:

CA
p1

= {p1.rank ∈ (0,4]∧ p2 ∈ [−p1.rank, p1.rank)}

CB
p1

= {p1.rank > 0∧ p2 ∈ [−p1.rank, p1.rank)}

CU
p1

=CA
p1
∩CB

p1
= {p1.rank ∈ (0,4]∧ p2 ∈ [−p1.rank, p1.rank)}

∆CA
p1

=CA
p1
−CB

p1
= φ

∆CB
p1
=CB

p1
−CA

p1
= {p1.rank > 4}

We begin by formulating the constraints on the parameters,
pi, of the counterpart APIs as two separate models. Then, we
check the satisfiability of these models using an SMT solver.
Subsequently, we determine the intersection and difference
sets for these two constraint sets on the same attribute, and
generate corresponding solutions (i.e., test cases) for both
the intersection and difference sets. To avoid duplication, we
invert the current solution and incorporate it back into the
constraint set, thereby generating a new test case.

3.4 Testing Optimization
During testing, we record the code coverage for each test case
by runtime instrumentation for Python code and compile-
time instrumentation for C++ code. Moreover, we construct

[!] FIXME: cannot compute Add as input #1(zero-based) was
expected to be a double tensor but is a int32 tensor [Op:Add]

\#(\d).* was expected to be a (.*) tensor 
but is a (.*) tensor

Add
x

ytf.dtypes.int32

tf.dtypes.double

error message

match pattern

test case

Add
x

ytf.dtypes.double

tf.dtypes.double
fixed test case

Figure 3: Test case fixing guided by error messages.

an oracle as follows to examine and sort testing results for
counterpart APIs.

Test Oracle. If any of the APIs under test exit unexpectedly
(e.g., segmentation fault), we categorize this as crash. If any
of them encounter an exception and throw error messages, we
interpret this as an invalid test case, which is beneficial for
test case optimization. Otherwise, if both counterparts execute
successfully, we compare the results based on Equation 1. If
the value distance exceeds ε, it is triaged as an inconsistency.

According to the runtime feedback, we propose two strate-
gies to further optimize the testing.

1 if (handle ->dtype != input_types[i]) {
2 return errors::InvalidArgument(
3 "cannot compute ", op->Name(), " as input

#", i, "(zero -based)",
4 " was expected to be a ", DataTypeString(

input_types[i]),
5 " tensor but is a ", DataTypeString(handle

->dtype), " tensor");}

Listing 4: Error handling code in TensorFlow

Error-guided Test Case Fixing. Figure 3 demonstrates that
the program might throw error messages, indicating the inva-
lidity of test cases. These messages can supplement parameter
constraints and be used to refine the test cases. More generally,
we first identify the throw point of an error message, which
is typically an assertion or error handling statement. Then
we analyze the message format and the preconditions asso-
ciated with the error message. As shown in Figure 3, while



testing the Add operator, we encounter an error message that
we trace back to the error handling code in Listing 4. The
error message comprises a variable-length formatted string.
We create a regular expression based on this format to extract
key hints, such as the specific parameter “#1”, the correct
type input_types, and the current error type “handle->dtype”.
Also, we trace back from this error handling code to the first
precondition: “handle->dtype!=input_types[i]”. Inverting this
condition gives us the correct condition, i.e., changing the
type to the expected correct type input_types.

Range Extension. This strategy seeks to increase code cov-
erage by expanding the sampling space of numerical param-
eters to generate more test cases. After T tests, if the code
coverage remains unchanged, we broaden the parameters’
sampling range within the value space still under the con-
straints. This includes extending the value range and value
shape. For instance, if the original value sampling range
is [min,max], it will be updated to [min−mid,max+mid],
where mid = max−min

2 . The value shape will increase a di-
mension, e.g., from (2,3) to (2,3,1). If the new range violates
the parameter constraints, we halve mid until it satisfies the
constraints. Meanwhile, the code coverage of the target API
might have reached a high level, it is not the only metric we
focus on during testing. There might still be hidden bugs,
and it’s infeasible to test all possible parameter value com-
binations, which is a significant challenge. Thus, we extend
some special values like empty value, zero, negatives, mini-
mum, and maximum for random selection and combination
to accelerate bug finding.

Reconsidering from the common parameter list PU , we
note that aside from the parameters shared by both APIs,
there are also differential parameters unique to each API.
For example, the rounding_mode of torch.div in Figure 2.
For these framework-unique parameters, we generate values
according to their constraints to expand the testing space.

4 Evaluation

TENSORSCOPE is implemented in 3.2 KLOC of Python code
which is accessible through [1]. We pull the latest version of
the converter for analysis and testing (see Table 1 for links
to each converter). The ε is usually taken as 1× 10−4. We
assume that the API profiles and API implementation of a
DL framework are consistent. We employ Semgrep [66] for
Python and Weggli [22] for C++ to parse and extract con-
straints. Specifically, we use Z3Py [13] to solve the constraints
extracted in Section 3.2. It is observed that the number of each
parameter’s constraints does not exceed 20, it is complexity-
acceptable for Z3 solver. We compile each DL framework
with the sanitizer feature enabled in the compilation options,
including Address Sanitizer (ASan) [68] and Undefined Be-
havior Sanitizer (UBSan) [12]. This capability enables us to
obtain a detailed explanation of the cause when a crash oc-

Table 2: Statistics of counterpart pairs among six frameworks
TF TFL ORT MS PyTorch Paddle

TF 314 117 167 - - -
TFL 138 13 - - - -
ORT 279 147 55 - 357 -
MS - - 60 241 85 -
PyTorch - - 97 - 281 -
Paddle 97 - 96 - 160 24

curs. We also use the option (e.g., -fcoverage-mapping) to
collect code coverage information. For each API, we perform
uniform sampling to generate a minimum of 20,000 test cases.
During the range extension, the initial value of T is 1,000,
which is doubled after each extension. We always run the
buggy code five times and generate random values with the
same seed to eliminate the disruptions caused by instability
in the execution environment, avoiding flaky test cases.

To evaluate the effectiveness and efficacy of TEN-
SORSCOPE, we conduct extensive experiments and analysis,
aiming to answer the following research questions.

RQ1. How accurate is the extraction of counterparts from
different frameworks by TENSORSCOPE?

RQ2. How effective is TENSORSCOPE in extracting and
conducting joint analysis of constraints?

RQ3. To what extent are the testing optimization strategies
in TENSORSCOPE beneficial?

RQ4. What efficacy can TENSORSCOPE provide in bug find-
ing?

RQ5. What advantages does TENSORSCOPE hold in com-
parison to related methods?

Experiment Subject and Settings. We select six mainstream
DL frameworks with their latest versions shown in Table 7 and
eight model converters (five official ones) shown in Table 1.

Runtime Environment. We use two Ubuntu 20.04 servers,
one with Intel Xeon Gold CPU (64 cores) and the other with
Intel Platinum CPU (192 cores) and two NVIDIA RTX 3090
GPUs) for the experiments.

4.1 Effectiveness in Counterparts Extraction
We extract a total of 12 groups of counterparts across six DL
frameworks (refer to Table 2). For example, we extract 279
counterparts from TensorFlow to ORT, and 97 counterparts
from ORT to PyTorch. Conversely, we extract 167 counter-
parts from ORT to TensorFlow, and 357 counterparts from
PyTorch to ORT. The numbers vary as forward and back-
ward converters are typically developed by different develop-
ers, each supporting a different number of convertible APIs.
There are 2,336 one-to-one counterparts, 392 one-to-many



Table 3: Number of APIs in counterpart pairs among six
frameworks

TF TFL ORT MS PyTorch Paddle Total

API 515 147 175 289 365 167 1658
APItotal 1028 159 186 655 498 236 2762

Ratio 50.1% 92.4% 94.1% 44.1% 73.3% 70.8% 60.0%

counterparts. The counterparts extracted from the converter
code have no false positives or false negatives.

Additionally, we extract six groups of intra-framework
counterpart APIs in gray cells to cover more non-popular
APIs. After manual verification, we finally obtain 928 intra-
framework counterpart APIs, excluding 46 false positives
(yielding a false positive rate of 4.7%). Some APIs may share
the same name, but their functionalities differ, or they may
exist at different abstraction levels. For example, tf.keras.Con
v2D and tf.nn.conv2d are equivalent in TensorFlow. But tf.ker
as.layers.Conv2D is not equivalent to tf.nn.conv2d, because
the former is an interface API while the latter is a core API.
The interface API casts the input tensor from float64 to float32
which will cause precision loss by default [78].

For an operator, it is not always directly convertible be-
tween two frameworks. It often requires the assistance of one
or more intermediate frameworks. In total, there are 1,658 op-
erator APIs from six frameworks in our counterparts database
(see Table 3). The ratio of the counterpart APIs to the total
number of APIs in each framework is as follows: TF (50.1%),
TFL (92.4%), ORT (94.1%), MS (44.1%), PyTorch (73.3%),
Paddle (70.8%). It is noteworthy that the ORT framework
holds the highest proportion, suggesting superior interoper-
ability. This indicates that models from other frameworks can
be transformed into ORT with relative ease.

Table 4: Constraints extracted by TENSORSCOPE

Single Multiple TotalPython C++ Python C++

TF 563 2943 1032 1948 6486
TFL 0 467 0 205 672
ORT 38 198 31 59 326

PyTorch 1186 2167 186 1332 4871
Paddle 207 1338 40 1660 3245

MS 499 892 229 354 1974

4.2 Effectiveness in Constraints Extraction &
Joint Constraints Analysis

We successfully extract 17,574 constraints within 3 hours,
which includes both Cs and Cm constraints shown in Table 4.
Due to the guidance of error messages during dynamic test-
ing (see Section 3.4), we verify and update the extracted
constraints in a timely and accurate manner. Since there are
multiple implementations of some operators, such as the same
operator of ONNX exists in more than one opset [61], we
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Figure 4: Comparison of code coverage and bug findings
with and without joint constraint analysis among 20 TF-PT
counterpart APIs.

take all the implemented constraints into account, resulting in
some of them not being satisfied. We treat these unsatisfied,
redundant constraints as false positives. The false positive
rate at this stage is 7.3%. In total, we add 253 new constraints
through the error message guidance, which we regard as false
negatives. Because these constraints do not appear in the as-
sertion statement, or they are located far from the operator
function, a complex flow of data and control is passed between
the operator implementation and the assertion statement. The
false negative rate at this stage is 1.4%.

Compared to DocTer on the same 1,409 APIs, TEN-
SORSCOPE performs better in constraint extraction, identi-
fying 11,357 constraints (8.1/API), as opposed to DocTer’s
9,109 constraints (6.5/API). TENSORSCOPE finds 6,859 Cs
and 4,498 Cm while DocTer only finds 6,382 Cs and 2,727
Cm. It shows that TENSORSCOPE has a distinct advantage
in extracting Cm constraints. As for each type of constraints,
TENSORSCOPE and DocTer extract 2,479/2,195 type con-
straints, 1,676/1,246 shape constraints, 3,788/3,555 data type
constraints, 1,801/1,431 rank constraints, and 1,613/682 data
value constraints, respectively. It shows that TENSORSCOPE
achieves 12.9%, 34.5%, 6.6%, 25.9%, and 136.5% increases
for five types of constraints. The remarkable gain for con-
straint data value stems from the fact that this type of con-
straint mostly resides in API implementation. However, Doc-
Ter only extracts constraints from API documents.

Here we compare the testing results of 20 counterparts
with and without joint constraints, using the same testing con-
figuration as in Section 4. We choose TensorFlow-PyTorch
counterparts (converted through ONNX) as our targets and
launch testing on the same set of randomly chosen 20 coun-
terpart APIs. We compare both the number of found bugs and
the code coverage of the counterpart APIs. From Figure 4
(X-axis represents the testing time, and Y-axis represents the
line code coverage of counterpart APIs and the number of
found bugs), we can see that the number of bugs found by



Table 5: Ablation study in testing optimization.

Settings TensorFlow PyTorch Total
Cov. #Bug Cov. #Bug Cov. #Bug

(i) 44872 12 42298 8 87170 20
(ii) 56019 12 54409 13 110428 25
(iii) 46072 20 45824 18 91896 38
(iv) 58292 21 57297 22 115589 43

TensorFlow ONNX

x x_1

AdjustContrastv2

y

64 x 64 x 3 x 2

args_0

ReduceMean

Sub

Mul

Add

output_0

args_1
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64 x 64 x 3 x 2

64 x 64 x 3 x 2

Figure 5: Conversion of the computational graph.

the tool with joint constraints is more than that without joint
constraints, and the code coverage of counterpart APIs is also
higher. Here the code coverage we adopt is the line coverage
collected by coverage.py [8] and llvm-cov [49]. These results
indicate that joint constraints can effectively guide the testing
process and improve its effectiveness.

4.3 Effectiveness in Testing Optimization

In this section, we conduct an ablation study to evaluate the
efficacy of two testing optimization strategies. We ask two
authors to review all error messages (about 1 person-hour per
framework), who design and cross-check 75 regular expres-
sions that can recognize 98% error messages. These error
messages help us find and refine 1,032 constraints. To evalu-
ate the effects of these strategies, we conduct four experiments
with distinct settings: (i) without optimization as the baseline;
(ii) applying error-guided test case fixing exclusively; (iii) uti-
lizing range extension in isolation; and (iv) integrating both
strategies concurrently. We test TENSORSCOPE with different
settings on 515 TensorFlow APIs and 365 PyTorch APIs for 6
hours. Table 5 shows that error messages can help get 23,258
more code coverage, and range extension can help find 18
more corner bugs. In total, these two testing optimization
strategies help find 23 more bugs than the baseline.

Furthermore, we delve deeper into the specifics of range
extension, which encompasses three distinct scopes, i.e., value
scope (17.5% coverage increase), shape scope (14.3%), and
parameter scope (68.2%). It is observed that 3,000+ test cases
generated with the extension in value scope allow us to find 11

bugs. It does not contribute much to code coverage but covers
the boundary cases in the value domain space, including 5
extreme value bugs and 6 null bugs. Over 1,000 test cases
generated in the shape scope allow us to test the scalability
of the operator better, especially to find 2 more bugs related
to high-dimensional tensors. Over 1,000 test cases generated
in the parameter scope allow us to reach more branches and
functionalities, yielding over 3,000 line coverage.

4.4 Efficacy

After 72-hours testing on these frameworks, we find a total of
257 bugs3, including 80 non-crash bugs and 177 crash bugs.
Among them, 230 bugs are newly found, and 188 are already
resolved. We also obtain 8 CVEs, as detailed in Table 6. We
verify and triage these bugs through manual efforts. The false
positive rate at this stage is 1.9%, which can be divided into
two types: ❶ uncaptured error messages, e.g., not implement
error, out-of-memory. ❷ stochastic algorithms, e.g., we find
that the random number generators in the two frameworks
are different, leading to inconsistencies. There are 145 seg-
mentation faults, 14 floating-point exceptions, and 18 aborts
among these crash bugs as shown in Table 7. All non-crash
bugs fall into the third category, which we further divide into
three types. These non-crash bugs shown in Table 8 include
46 precision bugs, 7 data layout bugs, and 27 behavior bugs.
We delve into a deeper analysis of these bugs in Section 5.

Case study. In TensorFlow, there is an operator named Adjus
tContrastv2 which adjusts the contrast of images. When the
rank of the images parameter exceeds 3, the operator produces
different results between TensorFlow and ORT (see Listing 5
in Appendices A). We measure the difference with absolute
errors=11.99 and relative errors=0.18. We construct a Tensor-
Flow model containing only operator AdjustContrastv2 and
use tf2onnx for conversion. The conversion rules are shown
in Listing 5, and the computational graphs before and after
the conversion are shown in Figure 5. This is a one-to-many
counterpart pair. The ONNX model uses four operators to
implement the functions of the operator AdjustContrastv2,
which are ReduceMean, Sub, Add, and Mul. This inconsis-
tency arises because the converter erroneously reduces the
axis of the images. It fails to account for the possibility of
high-dimensional inputs in the images.

4.5 Comparison with Other Work

We compare our tool with three other works: Atheris [23],
FreeFuzz [82], and DocTer [84]. Atheris is a well-known
Python fuzzer. It is based on Libfuzzer [50] to test Python
native code. We adopt the fuzzing code [77] based on Atheris
developed by TensorFlow. Both FreeFuzz and DocTer are
open-sourced. They mainly test TensorFlow and PyTorch

3Bug list is released at https://shorturl.at/cfimy

https://shorturl.at/cfimy


Table 6: Vulnerabilities found by TENSORSCOPE

ID CVSS Framework Type Symptom Description

CVE-2022-35935 7.5 TensorFlow missing validation `CHECK` failure given a nonscalar `num_results` value
CVE-2022-41883 7.5 TensorFlow missing validation OOB segfault `indices` list shorter than the `data` list
CVE-2022-41899 7.5 TensorFlow missing validation segfault given wrong shape tensors
CVE-2022-41891 7.5 TensorFlow missing validation segfault element_shape=[]
CVE-2022-41897 7.5 TensorFlow missing validation Heap OOB outsize inputs
CVE-2022-45907 9.8 PyTorch code injection arbitrary code execution using dangerous `eval`
CVE-2022-45908 9.8 Paddle code injection arbitrary code execution using dangerous `eval`
CVE-2022-46742 9.8 Paddle code injection arbitrary code execution using dangerous `eval`

Table 7: Crash bugs found by TENSORSCOPE. “Segv” stands
for segmentation fault, “FPE” is for floating point exception
and “Abort” means program abort.

Version #Bug Segv FPE Abort

TF 2.11 26 13 0 13
TFL 2.11 0 0 0 0
ORT 1.12.1 0 0 0 0
MS 1.9.0 & nightly 100 90 8 2
Paddle develop 23 15 6 2
PyTorch 1.10.0 & 1.12.1 28 27 0 1

Total 177 145 14 18

Table 8: Inconsistency bugs found by TENSORSCOPE

TF TFL ORT MS PyTorch Paddle

TF 2 2 1 - 0 -
TFL 0 0 0 - 0 -
ORT 10 0 0 - 3 -
MS 0 0 5 3 3 -
PyTorch 24 0 14 - 1 -
Paddle 3 0 6 - 3 0

frameworks. Under the same time (5 hours) and environment,
we randomly select 400 TensorFlow APIs and 400 PyTorch
APIs and test them using these four tools. The results are
shown in Table 9. All these found bugs are manually verified.
It is observed that TENSORSCOPE detects the most number
of bugs with 34 in TensorFlow and 30 in PyTorch. Also,
TENSORSCOPE achieves high code coverage in both two
frameworks. This success is due to the constraints collected
from the code and the joint constraints used for testing. We
also note that FreeFuzz identifies common program errors
as bugs, which may produce false positives. For example,
3 RuntimeError bugs and 2 NotImplementedError bugs are
thrown at Python runtime, making the program exit normally
without triggering a crash. However, the identified bugs are
crashes and numerical inconsistencies that are more harmful

Table 9: Comparison of code coverage and found bugs among
Atheris, FreeFuzz, DocTer, and TENSORSCOPE.

TensorFlow PyTorch Total
Cov. #Bug Cov. #Bug Cov. #Bug

Atheris 32213 7 38502 4 70715 11
FreeFuzz 40702 13 44183 19 84885 32
DocTer 42877 18 45035 15 87912 33
TENSORSCOPE 55362 24 53905 21 109267 45

in practice (see Section 5).

5 Measurement & Analysis

In this section, we present statistics for the found bugs and
vulnerabilities, followed by bug types and hazard analysis.

5.1 Statistics of Bugs
The buggy APIs often occur in arithmetic modules, such as
math (54), linalg (28). 56 of them are fused calculations with
more than one primitive operator, primarily in the Tensor-
Flow framework, e.g., tf.raw_ops.CropAndResizeGradBox
es. These buggy APIs are typically used in various stages
of DL model development, serving functions including data
processing (98), arithmetic operations (58), gradient compu-
tation (15), loss functions (4), optimizers (2), and others (7).
32 operator APIs appear in commonly-used models, such as
Logsoftmax in many classification models and so on. The root
cause of most bugs is missing checks, accounting for 158
bugs, including checking data types (88), array boundaries
(32), empty values (31) and others (7).

5.2 Types of Bugs
The bugs found by TENSORSCOPE can be categorized into
two types. One can crash the code, and the other induces
inconsistent computation results without any crash.
Inconsistent (non-crash) bugs. This type of bug does not
cause a crash during testing. Therefore, they are only de-
tected by comparing the computation results of these APIs
in different frameworks. In this study, we obtain 80 in total
for inconsistency bugs. After manual analysis, we categorize
these bugs into three types: ❶ Precision bugs. We find 46
bugs of this type. Different frameworks may demand differ-
ent computational precisions, in order to avoid the problem
of numerical instability for complicated operators. For in-
stance, TensorFlow often requires higher numerical precision
(such as float64) for parameters. However, when converting
a TensorFlow model to another framework like PyTorch, the
converter may not meet these precision requirements (e.g.,
it might use float32 for converted parameters), resulting in
a decrease in precision. If the model contains multiple op-
erators with precision bugs, the errors will accumulate and
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Figure 6: Distribution of confidence differences for the origi-
nal classification result before and after conversion.

amplify during inference time, eventually leading to incorrect
output. ❷ Data layout bugs. There are 7 bugs of this type.
For instance, the tf.SpaceToBatchND operator requires the
input data’s dimension order to be NHWC [38]. However,
the converter x2Paddle continues to use the NCHW data for-
mat, leading to the bug. ❸ Different exception handling bugs.
There are 27 bugs in this type. Two counterpart APIs may
behave differently about handling exceptions. One API may
abort the program or return a unique error code for an excep-
tion. The returned error codes are varying significantly among
frameworks, so they can also be captured by TENSORSCOPE.
Different error codes make it impossible for users to make
consistent judgments about the behavior of the model be-
fore and after conversion, and it becomes easy for users to
miss processes that could harm subsequent programs. For
example, when meeting invalid input not within the range
[−1,1], tf.math.acos returns -2147483648 in TensorFlow, but
torch.acos returns nan in PyTorch.
Bugs with crashes. We also find 177 bugs that can crash the
program, some of which are identified as vulnerabilities (see
Table 6). All of these bugs have been assigned CVE identi-
fiers, given their potentially harmful impacts (e.g., memory
out-of-bounds (OOB) access, denial-of-service attacks, and
other hazards). We also present their Common Vulnerability
Scoring System (CVSS) scores, as calculated by NIST [56].
These vulnerabilities span a range of types, such as CWE-
617 (Reachable Assertion), CWE-125 (OOB Read), CWE-20
(Improper Input Validation), CWE-682 (Incorrect Calcula-
tion), and CWE-77 (Command Injection). We present some
examples of each vulnerability type in Appendices D.

5.3 Hazard Analysis

Unlike traditional software, vulnerabilities in DL frameworks
can pose unique threats, especially degrading the security of
DL applications. In this section, we propose a quantitative
method for hazard analysis. For the first time, we successfully
identify another type of adversarial example that “exploits”
bugs in DL frameworks during the model conversion.

In the analysis, we select one of the flawed conversion rules

found by TENSORSCOPE, which resides in the tf2onnx con-
verter. This converter wrongly converts the data type of quan-
tized operators from uint8 to float32. Many on-device models
are quantized with uint8 data type [15]. If one model contains
such quantized operators, the computation results will be in-
consistent by 1× 10−2 magnitude after conversion by this
conversion rule. We select three models that can apply this
conversion rule, of which the structures are MobileNet [32],
InceptionV3 [71], and EfficientNet [73]. The classification
accuracy is measured with the ImageNet validation set (50K
images, 1K classes). The top-1 accuracy of MobileNet in Ten-
sorFlow is 72.3%, but after being converted to ONNX, this
decreases to 68.8%. This conversion makes 1,741 samples
from 134 classes misclassified (about 3.5% error rate). For
example, an image of “snail” is correctly classified in the orig-
inal model with confidence 0.7031. After the conversion, it is
predicted as “bubble” with confidence 0.5938 by the model,
and the confidence of class “snail” drops to 0.3984. This is a
new type of adversarial example, caused by perturbations in
the DL frameworks rather than in the input.

Figure 6 displays the distribution of changes in confidence
for all correctly classified samples. As for the 17,113 samples
with decreasing confidence, the reduction of confidence is
0.03 on average, with a maximum decrease of 0.30. To evalu-
ate its transferability, we feed the 1,741 adversarial examples
into the other two models (i.e., InceptionV3 and EfficientNet),
and 93.5% of them are misclassified.

The results demonstrate the possibility that the flaws in
model converters can be exploited to make the converted
model less robust during cross-framework development. More
specifically, one attacker knows the bugs in a framework or
a converter that can cause inconsistent results between the
original model and its converted version. Then the attacker can
craft a certain class of error samples, i.e., adversarial samples
specific to the target framework. These samples, while benign
on the original framework, can cause damage once converted
to another framework.

6 Discussion

Suggestions for developers. Here are three concrete sug-
gestions for cross-framework developers. ❶ Beware of low-
precision data types. Based on our findings, numerical com-
putations with low-precision data can vary across different
DL frameworks, platforms, and hardware. It is advisable to
explicitly set the precision for input data and perform nec-
essary precision checking. ❷ Use high-level APIs instead
of low-level ones, as the former generally come with more
guarantees. Framework developers should elaborate on the dif-
ferences between these APIs, especially for cross-framework
development. It can thus provide specific guidance when mi-
grating higher-level APIs. ❸ Regularly update test cases for
APIs, with a particular focus on rare and deprecated APIs.
For uncommon operators, framework developers can provide



specific use cases and release test cases to guarantee their
security. For deprecated APIs, framework developers should
declare their status in the documentation and code in a timely
manner to take mandatory update measures.
Limitations and future work. APIs that do not have coun-
terparts cannot be tested with the joint constraint method but
can be tested using their own constraints. The efficiency of
test case generation via sampling is limited even within the
constraints, which is also challenging. Additionally, in the
hazard analysis, we only identify the examples that have dif-
ferent prediction results due to framework bugs. It is a type
of untargeted attack. In the future, we aim to explore methods
for passively perturbing the input and exploiting bugs for a
targeted attack, such as manipulating an image so that it’s
classified as a specific label.

7 Related work

7.1 Deep Learning Framework Testing
In terms of test input, it can be roughly categorized into model-
based testing and API-based testing.
Model-based testing. This line of approaches feeds data
into various models to observe if any framework errors are
triggered. CRADLE [64] is designed to identify and locate
cross-framework inconsistencies among multiple backends.
AUDEE [28] mainly focuses on evolving model parameters
and input. It generates test cases based on the genetic al-
gorithm and then finds inconsistencies among multiple DL
frameworks. Luo et al. [51] propose new model coverage
metrics using graph theory by varying DL models. Their test
object is just a single framework. Furthermore, differential
testing and metamorphic testing are also adapted for finding
DL framework bugs. For instance, LEMON [81] leverages dif-
ferential testing to boost the test of multiple back-end frame-
works. Three kinds of model serialization mutation strate-
gies are proposed for more diverse test inputs. Muffin [25]
incorporates the model training phase into differential test-
ing, designing appropriate metrics to measure discrepancies.
EAGLE [80] identifies rules of equivalence for DL model
mutation and uses metamorphic testing to identify bugs in in-
dividual frameworks. Apart from the above studies, we select
APIs as the test subject, which necessitates new test methods
but enables us to test more framework functionalities.
API-based testing. There is a growing body of research on
fuzzing DL framework APIs. IvySyn [11] focuses on vul-
nerability discovery in APIs of individual frameworks, our
work performs cross-framework testing. Some traditional API
fuzzing approaches can be transferred to this new scenario.
Pythia [3] is a fuzzing system for RESTful APIs that employs
grammar rules and trains a seq2seq model to mutate test cases.
A surge of research adapts API testing approaches to hunt DL
framework bugs. DocTer [84] extracts API parameter con-
straints from the documents of DL frameworks with the help

of natural language processing techniques to test APIs more
accurately. DeepREL [14] considers API correlations within
the same framework, mining and testing multiple groups of
relational APIs based on single API signature similarity to
validate their inconsistency. Unlike the above studies, TEN-
SORSCOPE proposes a joint API test across multiple frame-
works, enabling us to construct more fine-grained constraints
and identify inconsistencies more efficiently.

7.2 Attacks and Defenses on DL Models

It is well known that DL models are suffering from multiple
attacks such as adversarial attack [9, 31, 72], model inversion
attack [70, 85], backdoor attack [4, 26, 47] and model extrac-
tion attack [30, 40]. These attacks motivate researchers to
devise a series of methods to evaluate the security of DL mod-
els and further protect them. For example, Pei et al. propose
DeepXplore [63] to find adversarial examples in DL models.
Advdroid [15] analyzes the threats that exist in on-device DL
models from two perspectives: physical theft and adversar-
ial example attacks. In particular, the lack of protection in
some frameworks leads models to be easily extracted and
corrupted. Accordingly, a number of studies have emerged in
the field of secure deep learning [41, 45, 67], such as Knott et
al. [42] using secure multi-party computation to implement
cryptographic inference. Recent attention is drawn to analyze
the underlying DL frameworks such as [16, 35, 39, 69, 86].
These studies investigate and describe existing DL framework
vulnerabilities, categorize the essential causes, and determine
fixing solutions. However, most of the research is devoted
to ensuring the quality of DL frameworks but is limited to
security insights such as security influence and exploitability
analysis of these framework vulnerabilities. To the best of
our knowledge, we are the first to conduct the exploitability
analysis for these vulnerabilities in DL frameworks. It paves
a new perspective for both security analysts and model de-
velopers to revisit vulnerabilities and the brought influence
for DL models, which can further elevate the security of DL
applications in critical areas.

8 Conclusion

We propose a novel approach TENSORSCOPE to test 1,658
counterpart APIs across 6 DL frameworks and 8 model con-
verters. Several optimization strategies are integrated includ-
ing joint constraint analysis and error-guided test case fixing
to enhance the quality of the test cases. TENSORSCOPE out-
performs state-of-the-art approaches in terms of both code
coverage and bug finding identified. Simply put, we have un-
covered a total of 257 bugs, with 8 of them assigned CVE
numbers. In addition, we analyze the root causes and potential
hazards of these vulnerabilities in a real-world scenario.
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Appendices

A Flawed Conversion Examples

We build a TensorFlow model using the code, “tf.raw_ops.Ad
justContrastv2(images=tf.random.uniform([64,64,3,2],dtype
=tf.dtypes.float32,maxval=255),contrast_factor=tf.random.u
niform([],dtype=tf.dtypes.float32,maxval=1),)”, then convert
the model into an ONNX model by the following conversion
handler of AdjustContrastv2 operator. The results shown in
Line 21-22 between these two models are inconsistent.

1 # tf2onnx converter code:
2 @tf_op("AdjustContrastv2")
3 class AdjustContrastv2:
4 def version_1(cls, ctx, node , **kwargs):
5 images , contrast_factor = node.input
6 dtype = ctx.get_dtype(images)
7 if ctx.get_dtype(contrast_factor)!=dtype:
8 contrast_factor = ctx.make_node("Cast",

[dtype], attr={’to’: dtype}).output[0]
9 rank = ctx.get_rank(images)

10 utils.make_sure(rank is not None , "
AdjustContrastv2 requires input of known
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rank")
11 # Reduce everything except channels
12 axes_to_reduce = list(range(rank))[:-1]
13 mean = ctx.make_node("ReduceMean", [images

], attr={’axes’: axes_to_reduce , ’keepdims
’: True}, op_name_scope=node.name).output
[0]

14 diff = ctx.make_node("Sub", [images , mean
], op_name_scope=node.name).output[0]

15 scaled = ctx.make_node("Mul", [diff ,
contrast_factor], op_name_scope=node.name)
.output[0]

16 result = ctx.make_node("Add", [scaled ,
mean], op_name_scope=node.name).output[0]

17 ctx.replace_all_inputs(node.output[0],
result)

18 ctx.remove_node(node.name)
19

20 # Here is the inconsistent results:
21 # tf_res : [[[[154.93831 131.07579 ],

[141.15346 162.48589 ], [123.68347
143.64304 ]], ... ]]

22 # onnx_res : [[[[153.70927 , 126.60315 ],
[139.92442 , 158.01324 ], [122.45444 ,
139.1704 ]], ... ]]

Listing 5: Conversion of the AdjustContrastv2 operator
between TensorFlow and ONNX

1 import tensorflow as tf
2 with tf.device(’/GPU:0’):
3 out = tf.raw_ops.LRNGrad(input_grads=a,

input_image=x, output_image=y)
4 # [-0.29 0.97 -0.28]
5 with tf.device(’/CPU:0’):
6 out = tf.raw_ops.LRNGrad(input_grads=a,

input_image=x, output_image=y)
7 # [2362.04 1360.11 2242.24]

Listing 6: Inconsistent results of LRNGrad operator between
CPU and GPU

B Converter Registry & Handler

We manually identify registries and conversion handlers for
8 converters, as shown in Table 10. In this table, the wild-
card represents all source/destination operators that can be
converted.

Table 10: Registry & handler patterns in eight converters
Converter Registry Handler

tf2onnx _OPS_MAPPING tf_op
onnx2tf ops.* make_node
onnx2torch _CONVERTER_REGISTRY add_converter
MindConverter *_to_ms.json *Mapper
torch.onnx.export symbolic_opset* _onnx_symbolic
x2paddle *map_ops mapper
tflite2tf op_new_types make_graph
TOCO OperatorType Convert.*Operator

C Assertion Statements
We extract all types of assertions from configurations and
manually identify 47 of them related to parameter constraints,
covering 97% of all assertions. Table 11 presents these as-
sertion patterns, where the wildcard represents a category
of assertion macros. For instance, CHECKS* could repre-
sent CHECK, CHECK_EQ, among others. The “# Instances”
represents the number of assertion instances utilized in each
framework.

Table 11: Assertion patterns defined in six frameworks
Framework Assertion patterns # Instances

TF
OP_REQUIRES*
CHECK*
DCHECK*

2
5
5

TFL TFLITE_CHECK*
TFLITE_DCHECK*

4
4

ORT ORT_RETURN_IF*
ORT_ENFORCE

4
1

MS MS_EXCEPTION* 4
PyTorch TORCH_CHECK* 10

Paddle PADDLE_ENFORCE* 8
Total 47

D Examples of Crash Bugs
Below, we provide a few representative examples for each
vulnerability type.

• Reachable Assertion. In TensorFlow, there are many as-
sertions and error-handling statements, e.g., CHECK. The
program will abort when it encounters an assertion con-
straint that is not satisfied. This could lead to Denial of
Service (DoS) attacks. Some assertions (e.g., DCHECK) are
disabled in the release version. Consequently, encountering
the same problematic input can trigger more severe issues.
E.g., CVE-2022-35935 in Table 6, the API forgets to check
if the parameter num_results is a scalar which causes the
program to exit unexpectedly.

• OOB Read/Write. OOB bugs in DL frameworks are often
caused by tensor arrays that exceed their allocated memory
during computation. E.g., CVE-2022-41883 found between
TensorFlow and PyTorch, when the size of indices does
not match the size of data, causing a negative index to be
calculated, resulting in OOB. These bugs could lead to
DoS attacks, or even more severe harm, e.g., Heap OOB in
CVE-2022-41897.

• Floating Point Exception. There are 28 bugs that can
cause floating point exception, broken down as follows: in-
valid operation (10.7%), division by zero (42.8%), overflow
(21.5%), and underflow (25.0%). In fact, DL frameworks
sometimes lack corner-case checking, resulting in floating
point exceptions and DoS attacks. Many arithmetic APIs in
Paddle, such as paddle.linalg.svd, paddle.linalg.eig and pad



Table 12: Reporting and reward methods by DL frameworks.
The digits in the parenthesis are the number of bugs reported.

Reporting Reward
E-mail (129) Form (4) Issue (8) CVE Bounty SA

TensorFlow % " " " " "

PyTorch % " " - " %

Paddle " % " " % "

Mindspore " % " " " "

dle.linalg.lu, do not check whether a parameter is empty, but
their counterpart APIs in PyTorch do include these checks.
Using our differential method, we quickly identify these
missing checks. When we pass empty tensors generated by
“paddle.to_tensor(np.random.uniform(-10,10,[0,0]).astype(
np.float64))” to them, they throw a floating point exception
and exit uncleanly.

• Command Injection. Command injection can also occur in
DL frameworks due to the misuse of dangerous functions.
Some functions (e.g., functions that are used to parse input
strings or files) require the execution of a string during
development. As a result, developers haphazardly use the
function eval in Python to achieve this purpose. But eval
is dangerous especially when its parameter is exposed to
users without checking. Based on this, we find three critical
vulnerabilities, CVE-2022-45907, CVE-2022-45908, and
CVE-2022-46742 in PyTorch and Paddle. All of them lead
to arbitrary code execution due to using eval blindly.

E Response from DL frameworks.
We have reported the bugs to the maintainers of four DL
frameworks, including TensorFlow, PyTorch, Paddle, and
Mindspore. Through multiple rounds of interaction, we unveil
some unknown measures of the maintainers managing these
bugs.

First, there are mainly three ways of reporting bugs: e-mail,
web form, and github/gitee issue. Table 12 shows what re-
porting methods are supported by DL frameworks. Second,
DL frameworks do not reach a consensus on the severity of
bugs. For example, we reported two bugs of code injection to
PyTorch and Paddle, respectively. One of them did not take
the report seriously, considering the difficulty of triggering
the bug, while the other patched it quickly and assigned a
new CVE. Additionally, different DL frameworks have vary-
ing reward/acknowledgment methods towards bugs, such as
issued CVEs, paid bounty, and acknowledgment in their se-
curity advisories. Finally, the accountability of bugs varies
from bug type. Generally, crash bugs are acknowledged by
framework maintainers, but it is somehow unclear to assign
which maintainers for inconsistency bugs. Considering the
incomplete equivalence between DL frameworks, converters
have to bridge the gap through approximation methods. There-
fore, based on our observations, most framework maintainers

attribute inconsistency bugs to converters.


	Introduction
	Background & Problem Statement
	Deep Learning Framework
	Cross-framework Model Conversion
	Problem Statement

	Approach
	Counterparts Extraction
	Constraint Extraction
	Test Case Generation
	Testing Optimization

	Evaluation
	Effectiveness in Counterparts Extraction
	Effectiveness in Constraints Extraction & Joint Constraints Analysis
	Effectiveness in Testing Optimization
	Efficacy
	Comparison with Other Work

	Measurement & Analysis
	Statistics of Bugs
	Types of Bugs
	Hazard Analysis

	Discussion
	Related work
	Deep Learning Framework Testing
	Attacks and Defenses on DL Models

	Conclusion
	Flawed Conversion Examples
	Converter Registry & Handler
	Assertion Statements
	Examples of Crash Bugs
	Response from DL frameworks.


