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ABSTRACT

Nowadays, SEAndroid has beenwidely deployed in Android devices
to enforce security policies and provide flexible mandatory access
control (MAC), for the purpose of narrowing down attack surfaces
and restricting risky operations. Generally, the original SEAndroid
security policy rules are carefully and strictly written and main-
tained by the Android community. However, in practice, mobile
device manufacturers usually have to customize these policy rules
and add their own new rules to satisfy their functionality exten-
sions, which breaks the integrity of SEAndroid and causes serious
security issues. Still, up to now, it is a challenging task to identify
these security issues due to the large and ever-increasing number
of policy rules, as well as the complexity of policy semantics.

To investigate the status quo of SEAndroid policy customiza-
tion, we propose SEPAL, a universal tool to automatically retrieve
and examine the customized policy rules. SEPAL applies the NLP
technique and employs and trains a wide&deep model to quickly
and precisely predict whether one rule is unregulated or not. Our
evaluation shows SEPAL is effective, practical and scalable. We
verify SEPAL outperforms the state of the art approach (i.e., EASE-
Android) by 15% accuracy rate on average. In our experiments,
SEPAL successfully identifies 7,111 unregulated policy rules with
a low false positive rate from 595,236 customized rules (extracted
from 774 Android firmware images of 72 manufacturers). We fur-
ther discover the policy customization problem is getting worse in
newer Android versions (e.g., around 8% for Android 7 and nearly
20% for Android 9), even though more and more efforts are made.
Then, we conduct a deep study and discuss why the unregulated
rules are introduced and how they can compromise user devices.
Last, we report some unregulated rules to seven vendors and so far
four of them confirm our findings.
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1 INTRODUCTION

Nowadays, SEAndroid (Security-EnhancedAndroid) has beenwidely
applied in Android devices to shrink attack surface. It is fully en-
forced since Android 5, and now serving and protecting more than
98% Android devices as of Sep, 2020 [6]. SEAndroid is derived from
SELinux (an effective security enforcement module in the Linux
kernel) [43], and it provides robust and flexible mandatory access
control (MAC) on sensitive resources and operations. The effective-
ness of SEAndroid is often highly determined by the correctness
and completeness of the security policy, a set of manually defined
entries named rules. With well-developed policy rules, SEAndroid
can easily and conveniently confine system services, control sensi-
tive data access, reduce the effects of malicious apps, and protect
users from potential flaws in apps. For this reason, in the official
Android source code, i.e., Android Open Source Project (AOSP), a
solid base policy is carefully defined and well maintained. This base
policy provides effective protection on apps and system services,
which is reflected and verified in a recent study [29]: almost 50% of
the kernel bugs can be blocked by the official policy in Android 8.

However, in practice, Android devices in the wild are usually
customized by manufacturers. To ensure that the customized fea-
tures can work properly, they need to add device-specific rules into
their devices. Unfortunately, the customized policy may undermine
the original defense provided by SEAndroid. For example, origin
policy strictly confines the access of unprivileged processes to sen-
sitive device nodes, thus most of the kernel driver vulnerability
cannot be triggered by an adversary to escalate the privilege. Yet a
customized rule in some devices breaks the confinement. For exam-
ple, it allows some unnecessary processes to access the vulnerable
driver of a MediaTek component (known as CVE-2020-0069) [35],
which can lead to an attack of local privilege escalation. For con-
venience, we refer to the potentially risky or unnecessary rules as
unregulated rules in this study.

* Guozhu Meng and Xiaorui Gong are the corresponding authors.
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To understand the status quo in policy customization, we need
a general method to identify the unregulated rules in the wild.
However, it is also a challenging task. First, the Android fragmen-
tation problem greatly hinders policy analysis. The representation
of policy may be different across devices, causing that the rules of
the same semantics look different (see Section 2.2). Second, it is
difficult to obtain sufficient semantics to evaluate the rationality
of the target rules merely based on the static representation of the
rules. Third, there is no clear ground truth to judge whether a rule is
permissive or not. The determination heavily relies on the expertise
and the case-by-case analysis sometimes can be subjective. Even
though we can write a script to query the unregulated rules based
on the patterns summarized by prior studies [18, 36], it cannot find
unregulated ones of previously unknown categories. In fact, since
the policy has evolved a lot, the old patterns hardly appear in the
latest versions of Android.

To meet these challenges, in this paper, we present a novel un-
regulated policy detection solution, termed as SEAndroid Policy
Analyzer (SEPAL), to automatically vet the massive number of cus-
tomized rules. The rationale of this study is to train an explicit
boundary between the unregulated and ordinary ones based on the
solid policy rules defined in AOSP via a learning-based approach.
We aim to highlight the outliers in the dataset from the perspective
of statistics and then manage to explain why they are classified as
unregulated thus to identify previously unknown patterns of the un-
regulated rules. In particular, SEPAL proceeds in three phases. First,
given a firmware image, SEPAL retrieves all the rules regardless of
policy formats and versions. To address the fragmentation problem
and unify the expressions of rules, SEPAL transforms the rules
defined in different representations into a uniform format named
atomic rules. To enrich the semantics in atomic rules, SEPAL then
generates informative features to represent the atomic rules from
the policy attributes and user IDs of the corresponding subjects.
We further manage to extract some semantic features generated by
NLP (Natural Language Processing) from official policy comments
to collect domain-specific knowledge about the corresponding pro-
cesses. Furthermore, we use the atomic rules collected fromAOSP to
model the complicated correlations among the subjects and objects
in SEAndroid via machine learning. To achieve high accuracy, we
enrich the original imbalanced dataset and use a compound model
jointed with a linear model and a deep neural network (DNN) to
learn the feature combinations in the official policy, which is in-
spired by modern recommendation systems. It yields a classifier to
help us highlight the unregulated rules in the huge amount of the
customized rules. We also design a baseline algorithm based on the
traditional machine learning methods for comparison, which are
used in prior research on SEAndroid. The results show that SEPAL
performs more accurately in our task.

To evaluate the performance of SEPAL, we collect 595,236 cus-
tomized rules from 774 Android images of 72 manufacturers. SEPAL
retrieves nearly 3.5 million of atomic rules from these images. By
applying SEPAL on these rules, we find that more than 12% of
customized atomic rules are unregulated, which comes from 7,111
unique policy rules defined by manufacturers. In our analysis, we
find that things improved a lot in the Android 7 era because Google
paid their efforts to break down some coarse types and dismissed

the usage of some error-prone attributes proposed in earlier re-
search [18, 36]. However, things seem to be going from bad to
worse nowadays - the percentage has risen to 17.76% in Android 9.
We find that even well-known manufacturers such as Samsung and
Huawei struggle to keep up with the evolution of official policy, not
to mention other manufacturers of less scale. Based on the results
presented by SEPAL, we further conduct an in-depth analysis of
these unregulated rules. We summarize four previously unknown
reasons why these rules are introduced such as the misuse of at-
tributes, the debugging related rules, deprecated rules, and the
excessive permissions granted to untrusted domains. Furthermore,
to demonstrate how the rules can downgrade the defense of offi-
cial SEAndroid, we show the security impacts of these unregulated
rules, including the exposure of system services and sensitive device
nodes, extending the capabilities of malicious apps, and providing
extra paths for vulnerability exploitation. To illustrate the security
impact, we also conduct attacks for a case study in which: 1)we con-
trol the screen lock password of the device, 2) communicate with
the camera without permission request, which is acknowledged by
corresponding vendors. We have contacted seven vendors about
the issues and four of them confirm our findings. To the best of
our knowledge, this is the first work to perform such a large-scale
measurement on policy customization. We hope our findings may
help manufacturers improve their policy writing.

The contributions of this paper are concluded as follows:
• New techniques. We propose a universal methodology, SEPAL,
to overcome the challenges in automatic analysis of massive
customized rules. SEPAL represents the rules in a fine-grained
format and utilizes NLP techniques and deep learning to effec-
tively detect unregulated rules. It helps a comprehensive and
scalable discovery of security issues in policy customization.
• New findings. SEPAL identifies 7,111 unique unregulated rules
from 3.5 million atomic rules collected from 70 manufacturers.
We then perform a large-scale measurement on policy customiza-
tion across versions and vendors. We shed light on a number of
important insights including why these rules are unregulated
and what security impacts they can cause.

2 BACKGROUND

2.1 Overview of SEAndroid

SEAndroid Concepts. To enhance security by implementing
mandatory access control (MAC), Smalley et al. customized SELinux
for Android, a.k.a. SEAndroid [43], which is ported by Google in An-
droid 4.3 and has fully been enforced since Android 5. Traditional
MAC contains multiple security mechanisms: role-based access
control (RBAC) [38], Multi-Level Security (MLS) [30] and Type En-
forcement (TE) [17]. Therefore, all the subjects (e.g., processes) and
objects (e.g., files, sockets) involved in SEAndroid inherit security
labels from these mechanisms, in the format of “user:role:ty
pe:securitylevel”. The fields user and role are mainly used
for RBAC and seldom used in SEAndroid, nor the field security
level used for MLS. The access control of SEAndroid is mainly
achieved by TE, which uses type field to confine the behaviors in
a system via a large number of type enforcement rules.



SEPAL: Towards a Large-scale Analysis of SEAndroid Policy Customization WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

In general, a type enforcement rule (abbreviated as rule) con-
forms to “allow domain type : class permission”, which defines the
allowable actions of a subject in the system. In particular, the domain

field specifies the label of the subjects (e.g., processes), type indi-
cates the labels of objects (e.g., files and sockets), class is the class of
objects, and permission presents specific operations performed on
the objects. For instance, a rule “allow untrusted_app app_data_file:
file {open read};” allows all the processes labeled by “untrusted_app”
to open and read ordinary files labeled by “app_data_file”. All the
rules are written by system developers and saved in *.te files in
the source code tree.

In order to write and manage those rules correctly and effi-
ciently, most types defined in SEAndroid have several attributes.
For instance, untrusted_app has multiple attributes including do-

main, appdomain, and netdomain, indicating that the untrusted app
is a process, an app process, and a process with network access,
respectively. The rules defined by attributes are valid for all the
subjects or objects that have this attribute. Policy writers can also
use macros to provide reusable pieces of the statement. For exam-
ple, rw_file_perms is a macro standing for a list of permissions -
getattr open read ioctl lock map append write, binder_use(domain)

can generate all the rules related to the usage of Binder IPC in a
single line for the target domain. Moreover, there are two types of
imperative rules in the source code tree of SEAndroid–allow rules

and neverallow rules. A neverallow rule will not be compiled into
devices, but it will interrupt compilation when there exist allow
rules violating the neverallow entries. These rules are mainly used
to avoid the introduction of unregulated rules.

These allow rules in *.te files are finally compiled into a firmware
image and initialized when the system boots up. All the access at-
tempts that are not explicitly allowed in the policy will be denied
by SEAndroid, even if the process is running as root:
$ id

uid=0(root) gid=0(root) groups= ... context=u:r:untrusted_app:s0:c512,c768

$ ls /

ls: /: Permission denied

$ logcat |grep avc

11-06 06:41:49.193 2810 2810 W ls:type=1400 audit(0.0:19): avc:denied {read}

for name="/" dev="sda43" ino=2 scontext=u:r:untrusted_app:s0:c512,c768

tcontext=u:object_r:rootfs:s0 tclass=dir permissive=0

2.2 Policy Diversity

The policy rules may differ a lot from the following perspectives.
Version Diversity. Both SELinux version and SEAndroid version
are used for indicating the status of the policy. From the perspective
of the SELinux version, it changes when new syntax features are
added to the policy. It may lead to the changes of policy syntax as
well as file structure in the binary policy. For example, Android 5
uses the SELinux version of 26.0, while Android 6 uses 30.0, which
leads to the changes of some macros and reserved words.

From the perspective of the SEAndroid version, it is synchro-
nized with the version of Android. It indicates the changes in the
policy with the evolution of the operating system. For instance,
in the SEAndroid policy rules before version 27, all processes can
access the ashmem device by directly opening the character device:
“allow domain ashmem_device: chr_file rw_file_perms.” However, on An-
droid 9 and SEAndroid 28, processes have to use a native API for

the same purpose, and such rule is modified to “allow domain ash-
mem_device: chr_file getattr read ioctl lock append write .” Thus opening
ashmem device in /dev from a normal user-level process will be
denied in Android 9. In fact, the official policy usually changes a
lot when the Android version evolves.
Policy Format Diversity. Policies with different file formats vary
in presentation. The following code snippets in different policy files
show how one rule is expressed in different styles.
#TE style:

allow { appdomain -isolated_app } app_data_file :file r_file_perms

#CIL style:

allow base_typeattr_97 app_data_file (file (getattr open read ioctl lock map ))

#Binary style:

allow bluetooth app_data_file: file getattr open read ioctl lock map ;

allow platform_app app_data_file: getattr open read ioctl lock map;

allow untrusted_app app_data_file: file getattr open read ioctl lock map; ...

Rules in the AOSP are saved in *.te files classified by domains.
They are mostly written in macros, attributes, and logical symbols
(such as “*” for all, “-” for exception) for the convenience of policy
writing. While the binary policy built into devices could be decom-
piled by setools [11]. The corresponding rules defined by attributes
in source code could be expressed as multiple entries in the decom-
pilation result of setools. It means that the granularity of rules may
differ between binary policy and source code policy. In addition,
neverallow rules will not be compiled into the binary policy.

With the introduction of Project Treble [8] in Android 8.0, a new
format of policy named Common Intermediate Language (CIL) is
used as the intermediate representation betweeen *.te policy files
and binary policy files - in addition to a compiled binary policy, the
devices also containmultiple compiled CIL files. Rules defined in CIL
files maintain the order and the shape of both allow and neverallow

rules defined in source code (*.te files). Thus CIL files contain
muchmore information than that obtained from binary policy using
setools. For instance, the abovementioned attribute base_typeattr_97
is assigned to all the app-level types except isolated_app, which
retains the shape of the negation expressions.
Policy Polysemy. Rules with identical syntax in *.te or binary
policy files might have different meanings in different devices due
to the customization of attribute definitions. For example, the defi-
nition of attribute hal_audio may differ between the Pixel device
and some third-party devices, resulting in that the rule below may
have a different meaning:“allow hal_audio audio_device:chr_file ioctl”
Such a rule is reasonable in AOSP, but in some third-party de-
vices, the attribute hal_audio is additionally assigned to domain
hal_ir_default and domain hal_irsi_default. The two domains are
mostly assigned to the infrared-related server process. It will grant
more permissions than the original rule (shown in Section 6.2).

3 PROBLEM STATEMENT

In this section, we present the problem to solve in this paper. The
customization of policy may bring severe security risks and destruc-
tive effects on the SEAndroid-enforced devices. Figure 1 shows an
illustrative example that one vulnerability can be exploited due to
an improper addition to the original policy. Specifically, an out-of-
bounds access vulnerability (CVE-2015-6637) has been found in the
driver of MediaTek (MTK) storage. The driver exposes a device node
/dev/misc-sd labeled bymisc_sd_device and regulated by original pol-
icy where only the vold domain can access the vulnerable process
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1. ALLOW vold misc_sd_device {ioctl read open}

2. ALLOW em_svr misc_sd_device {ioctl read open}
/dev/misc-sd

3. ALLOW radio em_svr {connectto}

@EngineerModeServer

em_svr

Radio process
radio

connect

call

User-space exploit

call

misc_sd_device

vold process

SELinux Context

vold

MTK Context

Figure 1: Example of security risks amid customization

(Rule 1). As a result, unprivileged processes are unable to exploit the
vulnerability in this way when SEAndroid is enforced. However,
several MTK devices write two customized rules (Rule 2 and 3)
which enables another path to reach the vulnerability point. As
such, user-space exploits can interact with process “radio”, connect
to the em_svr daemon and subsequently trigger the vulnerability
in kernel. Attributed to compatibility issues and insufficient policy
validation, vendors are prone to write these unnecessary or risky
rules that enlarge the attack surface, which can be further exploited
by malware [31, 32].

To simply yet precisely state this problem, we provide a formal
definition for these policy rules and then discuss the violation.
Definition 1 (SEAndroid Policy Rule) The policy rule in An-
droid can be represented as a six tuple (𝑂𝑝,D,T , C,P, 𝐴𝑡𝑡𝑟 ), where
𝑂𝑝 indicates allow or neverallow, D is the set of domains, T is the
set of component type, P presents all pre-defined permissions, and
𝐴𝑡𝑡𝑟 is a subset of domainsD or types T . As such,𝐴𝑡𝑡𝑟 ⊂ D ∪T .

Intuitively, a rule can be represented as 𝑟 = ⟨𝑜𝑝, 𝑑 |𝑎𝑡𝑡𝑟, 𝑡 |𝑎𝑡𝑡𝑟, 𝑐, {𝑝𝑖 }⟩,
where 𝑜𝑝 ∈ 𝑂𝑝 , 𝑑 ∈ D, 𝑡 ∈ T , 𝑐 ∈ C, 𝑝𝑖 ∈ P. Additionally, 𝑎𝑡𝑡𝑟
refers to a set of domains or types. Although 𝑎𝑡𝑡𝑟 can ease policy
writing, it raises the difficulty of policy validation and analysis due
to policy diversity (Section 2.2). To this end, we propose “atomic
rule” as the new metric for representing policy rules. The rationale
here is that we noticed the definitions of attributes may vary across
devices but the specified types remain stable. Specifically, atomic
rule can be defined as:
Definition 2 (Atomic Rule) It is a concrete instance of policy rule
and can be represented as 𝑟𝑎 = ⟨𝑑, 𝑡, 𝑐, 𝑝⟩. Let 𝜙 be a permission
identifier where 𝜙 (𝑟𝑎) ∈ {𝑎𝑙𝑙𝑜𝑤, 𝑛𝑒𝑣𝑒𝑟𝑎𝑙𝑙𝑜𝑤}. This rule specifies
only one permitted or forbidden behavior of a certain domain to-
ward a single target. So it is irreducible, that is, cannot be further
decomposed into finer-grained rules.

To identify the security risks brought by manufacturers’ cus-
tomization and understand how they are introduced, we intend
to learn the boundary of permitted and forbidden correlations of
the types defined in the AOSP policy and determine the viola-
tions between customized rules and these correlations. Formally
put, the study aims to generate a discriminator DC that outputs
the allow or neverallow permission given by an atomic rule, i.e.,
DC(𝑟𝑎) ∈ {𝑎𝑙𝑙𝑜𝑤, 𝑛𝑒𝑣𝑒𝑟𝑎𝑙𝑙𝑜𝑤}. As a consequence, one violation
(i.e., unregulated rule) is found if DC(𝑟𝑎) ≠ 𝜙 (𝑟𝑎). Further, the
violations highlighted by SEPAL can help us not only identify the
previously unknown patterns but better understand how to get rid
of the introduction of the unregulated rules.

4 METHODOLOGY

Figure 2 shows the workflow of SEPAL, and we describe how the
three components, i.e., Atomic Rule Collection, Feature Extraction,
and Wide&Deep Based Classification, work together to identify the
unregulated rules in manufacturer images in this section.

4.1 Atomic Rule Collection

Considering the diversity of policy file formats and policy granular-
ity, at first we express the rules in different file formats from AOSP
and firmware images into the atomic form. We develop a universal
parser to obtain themetadata, i.e., the six tuples (𝑂𝑝,D,T , C,P, 𝐴𝑡𝑡𝑟 ),
from the policy files in AOSP and firmware images and then trans-
late the metadata into atomic rules. For policy rules in the man-
ufacturer images from different versions, we only need the allow
rules. Thus we can directly extract the original policy rules from
the binary policy files or CIL files. Existing tools such as [4, 13] can
be used for firmware extraction according to how these images are
packed. The policy rules after Android 8 are saved in CIL files and
located in system and vendor partition separately. It is trivial to
extract the tuples after merging these CIL files. On the earlier ver-
sions of Android, the binary policy files are packed in the ramdisk
of the boot image. The parser uses setools to decompile the binary
policy and retrieves allow rules and attributes in the binary policy.

We also need AOSP rules for model training. It extra requires
the neverallow rules as the negative data record, thus we cannot
use binary policies because the neverallow rules are never compiled
into binary. Accordingly, directly parsing *.te files in AOSP is
cumbersome because they are written in complicated macros and
logical symbols, and the syntax of these rules may also evolve across
versions. As such, we use CIL files for constructing the training
dataset. Moreover, the CIL files nearly maintain all the semantics
defined in *.te, thus could be used to enrich our initial dataset
(shown in Section 4.3). But the CIL files are only available after
Android 8. For former versions, we modified the checkpolicy [3],
an open-source te compiler, to add compatibility support to compile
the CIL files from earlier AOSP source code. Then the metadata
could be easily retrieved from the CIL policy files.

After obtaining the tuples from AOSP and firmware images, we
recursively expand all the subjects and objects defined by these
attributes until all the attributes are replaced in the rules. Then we
split the permissions separately to obtain atomic rules.

4.2 Feature Extraction

To better represent the semantics between elements in an atomic
rule, we distill three types of features from these rules.
F1 Basic semantics in atomic rules. Every subject, object, class,
and permission that has appeared in the policy will be directly
mapped to the vector space after one-hot encoding. Furthermore,
some attributes can intuitively characterize the types in the rules
but they are dismissed during the process of decomposing original
rules into atomic rules. Specifically, the following attributes are
represented as six boolean features: domain indicates whether the
subject is a process,MLS indicates whether the process can override
Multi-Level Security [37] restrictions, core indicates whether the
type is defined by the platform, app indicates whether the subject
is an app process, net indicates whether the subject can access



SEPAL: Towards a Large-scale Analysis of SEAndroid Policy Customization WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

AOSP part

Attribute feature extraction
Negation-based data supplement

Wide&Deep model

Atomic 
rules 

vectors

OEM part

Unregulated 
rules

2. Featrue Extraction
3. Wide&Deep based Classification

1. Atomic 
rule 

collection

Redundancy removal

OEM 
Roms

AOSP 
policy 

Atomic 
rules

User ID feature extraction

NLP-based feature extraction

Figure 2: SEPAL’s workflow

network, and untrusted indicates whether the untrusted code can
be executed in the process context.
F2 User ID of running processes. The user ID (UID) indicates the
privilege level of a process. Obtaining the UID from a running device
is trivial. Prior research [18] directly uses “adb shell ps -Z” to collect
this information via an adb connection from the rooted devices,
which is not feasible in large-scale analysis. To this end, we develop
a static approach to associate user IDs and types in policy without
a runtime environment. The UID of app-related subjects is trivial to
obtain - a file named seapp_context indicates all the user accounts
of these subjects. For system daemons, inferring their UIDs requires
the correlated information saved in file_context in the system, init
script files *.rc, and typetransition entries in the policy. Take the type
mediadrmserver as an example. To obtain its user account, at first
we look up the policy files and obtain an entry “typetransition init
mediadrmserver_exec process mediadrmserver”, which shows the type
init will be converted into mediadrmserver when it executes files
labeled by mediadrmserver_exec. Then file_context shows the type
mediadrmserver_exec is only assigned to /system/bin/mediadrmserver.
Finally, the following entry is spotted in mediadrmserver.rc:
service mediadrm /system/bin/mediadrmserver ... user media ...

It concludes that the mediadrm process labeled as mediadrmserver

runs as media.
F3 Rule comments. Sometimes similar operations may be ex-
pressed with different classes or permissions. Take the rules defined
in file hal_wifi.te and app.te for example.
========= hal_wifi.te =========

# Allow hal_wifi to send dump information to dumpstate:

allow hal_wifi dumpstate:fifo_file write;

========= app.te =========

# Allow apps to send dump information to dumpstate:

allow appdomain dumpstate:fd use;

allow appdomain dumpstate:unix_stream_socket {read write getopt getattr};

From the comments, both the app and hal_wifi can send dump
information to dumpstate, even though they use different IPC chan-
nels. To characterize these latent correlations between subjects, we
need to parse and vectorize the comment text for the corresponding
types. However, the comments are usually written arbitrarily, some
of them even have little to do with the semantics of the rules, such
as bug IDs or corresponding shell commands. Considering that
the comment we concern about essentially defines the actions of a
subject and the resources it can access, we manage to extract the
keywords about who-does-what from the comments and represent
them into vectors via NLP techniques.

Figure 3 shows how we represent the comments of a subject
into two vectors (i.e., allow and neverallow vectors). First, we collect
a policy-related corpus from the SELinux Wiki page [10]. Based on
the definitions of object classes and permissions used by SEAndroid,

Keyword Triplets 
Extraction

SELinux Wiki

*.te in AOSP

nouns and verbs SELinux corpus

WordNetNLP

Depend. 
parsing

Dependency tree keywords

doc2vec

allow

neverallow

.…

.…

Figure 3: The workflow of rule comment vectorization

Algorithm 1: Find keyword triplets in a sentence
Input: 𝑑𝑡 : the dependency tree of the sentence
Output: 𝑘𝑡 : the keyword triplets

1 𝑉𝑒𝑟𝑏𝑠,𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 ← getVO(𝑑𝑡 ) ;
2 for v ∈ Verbs do
3 if inActionCorpus(v) then

4 𝑎𝑐𝑡 ← 𝑣; 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← getObjs(𝑣) ;
5 for res ∈ resources do
6 𝑐𝑜𝑚𝑝 ← getComp(𝑟𝑒𝑠) ; 𝑡𝑟 = {𝑎𝑐𝑡, 𝑟𝑒𝑠, 𝑐𝑜𝑚𝑝 };
7 if 𝑡𝑟 ∉ 𝑘𝑡 then

8 𝑘𝑡 ← 𝑘𝑡 ∪ 𝑡𝑟 ;

9 for obj ∈ Objects do
10 if inResourceCorpus(obj) then

11 𝑟𝑒𝑠 ← 𝑜𝑏 𝑗 ; 𝑐𝑜𝑚𝑝 ← getComp(𝑜𝑏 𝑗) ;
12 𝑎𝑐𝑡 ← getPredicate(𝑜𝑏 𝑗) ; 𝑡𝑟 = {𝑎𝑐𝑡, 𝑟𝑒𝑠, 𝑐𝑜𝑚𝑝 };
13 if 𝑡𝑟 ∉ 𝑘𝑡 then

14 𝑘𝑡 ← 𝑘𝑡 ∪ 𝑡𝑟 ;

15 return 𝑘𝑡 ;

we extract all the verbs (e.g., open, read) and general resources (e.g.,
file, sockets) related to access events. Then we use WordNet [34]
to obtain the synonyms of these verbs to enrich the corpus. Last,
we obtain 515 verbs and 49 resources, and this corpus can help to
identify the sentences related to the access events and filter the
irrelevant words in the comments. But simply using a keyword
search method is prone to produce false positives due to the poly-
semy in English. So we perform the dependency parsing to get the
words’ dependency tree with the part of speech (POS) tags. Then,
we implement a keyword triplets extractor based on the principle of
finding SVOs in NLP, which takes the dependency tree mentioned
above as inputs and extracts subject–verb–objects from a sentence.

Algorithm 1 describes how we extract keyword triplets. Specifi-
cally, each sentence is represented as a dependency tree after tok-
enization and lemmatization. We then retrieve the verbs and objects
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in the sentence based on the dependency information and POS tags
of these words, which is similar to the process of getting SVOs [5, 9]
in NLP. If these words are in our corpus, we will add them as well
as their complements in the dependency tree into our keyword
set. Take the aforementioned sentence “Allow apps to send dump
information” as an example. First, function getVO extracts phrases
including “allow apps” and “send information” from the depen-
dency tree of the sentence. But neither the verb “allow” nor the
object “apps” is in our corpus via function InActionCorpus at line
3 and InResourceCorpus at line 11. So they will be dismissed by
the parser. On one hand, the verb “send” is a common action in
our corpus, thus we can get the resource “information” and its
complement “dump” via function getObjs at line 4 and getComp at
line 6 respectively. On the other hand, as “information” is in our
resource corpus, function getComp at line 11 and getPredicate at
line 12 return a keyword triplet: {send, dump, information}.

Note that we do not extract the subject of one sentence since it
is often omitted in a policy comment. However, we can determine
the subject through the document filename. Last, all the comments
in one *.te file will be represented by two sets of keyword triplets:
one from the comments of allow rules and the other from those
of neverallow rules. At last, each keyword triplet is treated as a
normalized sentence in the corresponding “document” (the *.te file
it locates). We use doc2vec [33] to embed these comments into two
300-dimensional vectors for model training.

4.3 Wide&Deep Based Classification

In this section, we describe how to augment our data to solve the
data imbalance problem and how the models are trained.
Data Augmentation. After obtaining atomic rules from AOSP,
we notice that the ratio of allow rules and neverallow rules is ex-
tremely imbalanced, which may bias the model. For instance, 95.4%
of atomic rules in Android 8 are neverallow. That is because most
of the allow rules specify fine-grained domains, yet the neveral-

low rules usually refer to a large number of domains so that only
privileged domains can access sensitive data. To construct a train-
ing dataset with balanced labels, we manage to supply some addi-
tional atomic rules based on the negations in CIL files. Specifically,
CIL introduces a set of attributes with the prefix of base_typeattr.
These attributes are a subset of the attributes defined in AOSP.
For example, base_typeattr_293 is assigned to all the types with
attribute appdomain except type shell and con_monitor_app by
the entry: “typeattributeset base_typeattr_293 (and (appdomain)

not (shell con_monitor_app))”. So from those neverallow rules de-
fined by base_typeattr, we can infer which subjects cannot per-
form such behavior except the subject excluded by base_typeattr.
The base_typeattr_293 is not allowed to access files labeled by
con_monitor_app, which alludes that both shell and con_monitor_app

can access such files. Similarly, extra atomic allow rules could be in-
ferred from negation statements in neverallow rules. These atomic
rules inferred from negations can greatly enrich our training dataset.
Moreover, by limiting the number of “inferred” atomic rules, we
can adjust the proportion of the labeled data in the training dataset.
Redundancy Removal. Only the customized rules in the im-
ages will be considered for further classification. Therefore, we
perform a comparison to obtain the customized part. Note that

the representation of atomic rules can help us precisely find the
manufacturers-defined rules regardless of the attributes’ difference
between devices. Last, 3.5 million atomic rules added by manufac-
turers are obtained from over 40 million atomic rules, which yields
267,162 unique atomic rules in total.
Wide&Deep Model. After obtaining the atomic rules, we jointly
trained a wide linear model and a deep neural network to classify
whether one rule is unregulated or not. Considering the significant
evolution of Android policy, we train one model for each Android
version separately. The features extracted from the basic semantics
in atomic rules and the User ID (i.e., F1 and F2) are encoded into
a one-hot representation. They are fed for training a Logistic Re-
gression (LR) classifier, the “wide” part of the model. In addition,
some features may work better after a combination. For example,
the class field indicates the class of the object, and it confines the
permission field as well. Crossing these fields together enables the
wide model to treat them as a synthetic feature and learn the weight
for each combination of them.

However, such a linear model is not precise enough because
these features are discrete and extremely sparse - in SEAndroid
policy, only a little amount of types are correlated. Most of the
types are neither correlated by allow nor neverallow in the policy. It
makes the traditional machine learning algorithms perform ineffec-
tively on the classification of previously unseen subject-object pairs
because they can only memorize the combinations of features that
have appeared in the training set. Further, some rules may have
indirect connectivity, resulting in that we might inevitably miss
some inconspicuous but informative features in feature selection.

To address these issues, we further represents the features into
a low-dimensional dense embedding vector and then use a Deep
Neural Network (DNN) to learn the relationship of unseen feature
combinations. The idea is inspired by the model adopted by modern
recommender systems, in which a user is not correlated with most
of the items but only shows his preference or dislike for a limited
number of items in a large dataset. Recent studies [19, 22] solved
this problem by jointly using a linear model (e.g., LR or Support
Vector Machines) for learning the frequent co-occurrence of fea-
ture combinations in the training dataset, as well as a deep model
(e.g., DNN) for exploring new feature combinations based on tran-
sitivity of correlation. This structure has proved its effectiveness
in real-world Click-Through-Rate (CTR) prediction tasks such as
recommending applications for users in Google Play. It predicts
users’ preferences based on user profiles. Similarly, we can also
predict the subjects’ “preference” to objects based on their features.

The DNN classifier usually takes the embedding representation
of the data as input. We map the one-hot-encoded features F1 into
a dense vector space via embedding and concatenate them with the
embedding representation of policy comments features (F3). Then
we use four fully connected layers to take these embeddings as
input. Finally, the deep model shares the same output unit with the
liner model, which yields the final classification results of atomic
rules. The details of the classification model and the input features
are available on our website [7]. When the training is finished,
these models will receive the vectorized manufacturers atomic
rules 𝑟𝑎 and output a classification resultDC(𝑟𝑎). The 𝑟𝑎 would be
highlighted as unregulated ones if DC(𝑟𝑎) ≠ 𝜙 (𝑟𝑎).
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Table 1: The performance metrics of SEPAL and EASEAndroid

Android Version
Evaluation dataset SEPAL’s metrics Baselines metrics (𝑚,𝜎) = (10, 55%)

# of Positive # of Negative Accuracy Precision Recall Accuracy Precision Recall # of Unclassified
Android 5 19438 7375 0.986 0.990 0.991 0.895 0.966 0.893 742 (2.77%)
Android 6 7956 8893 0.990 0.969 0.973 0.790 0.633 0.747 1320 (7.83%)
Android 7 14438 27610 0.985 0.978 0.981 0.801 0.660 0.832 1488 (3.54%)
Android 8 118493 109670 0.984 0.986 0.983 0.831 0.934 0.868 1029 (0.45%)
Android 9 200107 152009 0.978 0.981 0.980 0.847 0.899 0.851 1432 (0.41%)
Average 72086 61111 0.985 0.981 0.982 0.833 0.818 0.838 1202 (3.00%)
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Figure 4: Distribution of firmware images

5 EVALUATION

In this section, we evaluate the efficacy of SEPAL and compare it
with the related approach in prior research.

5.1 Environment Setup

Implementation.We build a prototype of SEPAL in Python, which
contains 2 KLOC for atomic rule collection, 3 KLOC for feature
extraction, and 500 LOC for the Wide&Deep based classification.
We use spacy [12], a state-of-the-art NLP library for dependency
parsing and Tensorflow Estimator [14] for model training.
Dataset. Considering that the evolution of Android can signifi-
cantly affect policy writing, we check out the latest released branch
for each version (i.e., from Android 5 to Android 9) as the refer-
ence policy. In total, 27,668 original policy rules of allow rules and
8,446 of neverallow rules are obtained. After atomic rules extraction
and data augmentation, 6.7 million of atomic rules are obtained.
To gather customized rules for a large-scale study, we collect 774
stock Android firmware images from both manufacturers’ official
websites and the third-party forums like [2, 16]. Figure 4 shows
the distribution of collected firmware images for both AOSP and
manufacturers. In total, over 3.5 million of atomic rules are obtained
from 595,236 customized policy rules after redundancy removal.

5.2 Classification Accuracy

Comparison with baseline. To illustrate the effectiveness of
SEPAL, for each Android version, we extract 10% of the atomic
rules as our test dataset. Then we use SEPAL to check whether the
predicted result of a given atomic rule in the test dataset is consis-
tent with its label, i.e., allow or neverallow. Additionally, we com-
pare SEPAL with a baseline approach based on EASEAndroid [46],
which uses a Nearest-neighbors-based (NN) classifier and a Pattern-
to-rule distance measure to refine the policy without NLP feature
extraction and DNN classification. Specifically, it will first find
all the “neighbors” of the target customized rules in the training
dataset. The neighbors of one certain rule are determined if there is
only one field difference between the rules. For example, two rules
are neighbors if they are defined by different domains but share
the same ⟨𝑡, 𝑐, 𝑝⟩. Then the baseline algorithm classifies the target
rule based on the label of the majority of neighbors in the training

dataset. But if the number of the neighbors (𝑚) is less than 10 or
the majority of the neighbors occupies less than 55% (i.e., 𝜎 < 55%),
it will classify the target as “unclassified”. Such thresholds are also
adopted by EASEAndroid. Note that if we use a stricter setting
for the baseline approach, for example, increasing the values of𝑚
and 𝜎 , it will introduce more unclassified rules. In our experiments,
when we used the semi-auto mode of EASEAndroid, i.e., thresh-
old (𝑚,𝜎) = (10, 75%), there were 32% of atomic rules remained
unclassified in Android 6. The percentage would increase to 63% if
we use auto mode ((𝑚,𝜎) = (10, 85%)) defined by EASEAndroid..

Table 1 shows the results in terms of Android versions for
SEPAL and the baseline method. SEPAL achieves 98.5% accuracy,
98.1% precision, and 98.2% recall on average, and EASEAndroid
(threshold (𝑚,𝜎) = (10, 55%)) obtains an average of 83.3% accuracy,
81.8% precision, and 83.8% recall upon the same test dataset. Thanks
to the additional Deep Neural Network and the informative features,
SEPAL outperforms the baseline significantly, not to mention that
there are still some rules that the baseline cannot classify.

We manually analyze mistakes in the baseline results to recog-
nize the gap between SEPAL and EASEAndroid. On the one hand,
the baseline algorithm blindly classifies the behaviors performed
by unprivileged subjects into negative ones because these subjects
appear quite frequently in neverallow rules. On the other hand,
even the privileged subjects are restricted by some neverallow rules
in AOSP, but the baseline algorithm classifies these forbidden be-
haviors as allow. By a manual examination, we find it is difficult
for SEPAL to classify behaviors that occur infrequently, such as
the rules related to capability management (e.g., sys_admin and
net_admin) and rarely used inter-process communication channels
(e.g., shared memory shm and message queue msg). It is largely due
to the lack of related training data, so that analysts have to verify
these rules with rarely used classes and permissions manually.
Manual Examination. To evaluate the practicality of SEPAL, we
perform a comprehensive manual verification of the unregulated
rules found in a physical device, i.e., Huawei P20 with Android 9.We
review the latest AOSP commit message, comments for these rules,
the functionality and capability of related processes, and permission
bits of associated resources, as well as the consultation of the policy
developers. Among 368 investigated atomic rules, 283 (76.9%) of
them are confirmed to be unnecessary and overly permissive. Nearly
half of them in the test device are introduced due to the misuse of
an attribute named “hal_audio” (see Section 6.2). However, due to
the lack of corresponding behaviors in the training dataset, SEPAL
misclassified 40 (10.9%) atomic rules into unregulated ones. For
example, the rules allow kernel to manage the Linux capabilities

includingmknod, sys_admin, and chown are mistakenly classified as
unregulated rules. The remaining 44 rules are difficult to determine
without sufficient references and comments.
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Figure 5: Distribution of the unregulated rules. The high-low lines indicate the percentage range

6 RESULT ANALYSIS

In this section, we analyze the results presented by SEPAL and
perform a large-scale measurement on the policy customization in
the wild to answer the following three research questions (RQs).

6.1 RQ1: How does the policy customization

evolve across versions?

Overview. Fig 5 shows how the number and percentage of unreg-
ulated rules evolve across the Android version and manufacturer.

In Android 5, the official policy is still lenient. For most manufac-
turers, they didn’t have to perform heavy customization on AOSP
rules. On average, each image contains 279 (5.13%) unregulated
atomic rules. In fact, across 13 manufacturers in the dataset of An-
droid 5, Samsung and Huawei are the major contributors (94.57%)
to the unregulated rules in Android 5. For other manufacturers,
less than one hundred atomic rules are added. Due to the lack of
limitations on app processes asserted by neverallow rules, 20.20% of
the rules in Android 5 are defined by app-related domains. Most
of them are explicitly forbidden in the later versions of Android.
Besides that, a typical category of the unregulated rules in Android
5 is defined by coarse-grained attributes such as proc, sysfs, and
unconfineddomain. These rules respectively allow the subject to
access nearly all the nodes in /proc, /sys/fs and any other mounted
filesystems without a declared label. In the later versions of An-
droid, Google defined many finer-grained types for the nodes in
these filesystems and extremely limited access to proc and system
partitions.

In Android 6, though the average number of the customized
atomic rules did not rise much (from 5442 to 5677), the percentage
of unregulated rules significantly increased from 5.13% to 12.94% in
the 6.0 era - manufacturers such as ZTE, Meizu, and Oppo started
to add more unregulated rules (nearly 20%) at that time, most of
which is defined by the coarse-grained attributes assigned for data
partition and device nodes in /dev.

In Android 7, some famous manufacturers broke down the
coarse-grained attributes and types mentioned above. The reason
might be that research had shown the security issues introduced
in policy customization. For instance, problematic rules such as
the overuse of unconfineddomain, unlabeled, and unprivileged app
domains summarized by Reshetova et al. [36] hardly appeared since
Android 7. Thus the average number was reduced to 345 and the
percentage was reduced to 7.83%.

In Android 8 and Android 9, the official policy has becomemuch
finer than ever before. However, the percentage of unregulated rules

has risen again. The percentage came to 10.27% in Android 8 and
even rise to 19.68% in Android 9, which shows that the customiza-
tion on the policy has not improved but become worse again. It has
even become more and more difficult to keep up with the official
policy for manufacturers. A possible reason is the introduction of
Project Treble [8], which separates the lower-level customized code
from the Android system framework. To update SEAndroid to work
with Treble, manufacturers have to maintain their own hardware-
specific policy rules and build their own images so that they can
update those images independent of the AOSP, which is prone to
introduce unregulated rules in devices. The vast bulk (27.61%) of
the unregulated rules defined for hardware abstraction layer (HAL)
domains prove our concerns. These domains with the prefix hal are
assigned to the hardware layer processes implemented in vendor
images since Android 8.
Case study on Samsung. Samsung is the only manufacturer that
customizes policy heavily in Android 5 devices. On average, each
image contains 1,203 unregulated rules in Android 5 and the number
even comes to 3,268 inAndroid 6, which is several times that of other
devices. Samsung introduced many coarse-grained rules at the early
stage. For instance, nearly half of the rules are related to the use
of socket. It could be caused by the overuse of common attributes,
such as domain, and unlabeled, which leads to the introduction
of many irrelevant atomic rules in one entry in the source code.
The situation has been improved since Android 7. The percentage
of unregulated rules has been reduced to 7.89% and the average
number of unregulated atomic rules is only 500.

Additionally, Samsung defines batches of rules with customized
defined attributes. For example, newAttrs is only spotted in Samsung
devices. They play similar roles as base_typeattrs introduced in the
official CIL policy in Android 8. These attributes are responsible for
a large number of unregulated rules of Samsung devices in Android
5 and 6. Most of them were removed in Android 7 by Samsung, but
several attributes such as platformappdomain are still retained in
the latest versions. It shows that Samsung has made its efforts in
refining the policy rules in the early days.
Case study on Huawei. In Android 5, Huawei performs well on
policy customization - only 4.3% of the atomic rules are unregulated.
Although Huawei does not perform as heavy policy customization
as Samsung, the performance of Huawei is similar to that of Sam-
sung in earlier Android versions. However, in Android 8, Huawei
had little improvement but got difficult to keep up with the official
policy evolution - 15.74% of the atomic rules in Android 8 and 20.92%
of the atomic rules in Android 9 are classified as unregulated ones.
Among these rules, nearly 30% of the unregulated rules introduced



SEPAL: Towards a Large-scale Analysis of SEAndroid Policy Customization WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

by Huawei in Android 8 are related to types that are prefixed with
hal. All these types introduced by Project Treble are designed to
refine the hardware abstraction layer (HAL) in official Android 8.
Further, we notice that in some Huawei Android 8 devices, attribute
domain is allowed to read all the link files of the executables in the
system via “allow domain exec_type lnk_file read”. The combination
of two coarse-grained attributes yields hundreds of unregulated
atomic rules at one time.
Miscellaneous. Further, to study the overall ecosystem of policy
customization across manufacturers, we analyze the images from
72 unique manufacturers under the same Android version (Android
8). Figure 6 presents the top 10 manufacturers with the highest
unregulated percentage in Android 8. MTN is the manufacturers
with the highest unregulated percentage (18.08%) in Android 8. Note
that the average unregulated percentage is only 10.64% in Android
8. To the best of our knowledge, the devices produced by these top
10 manufacturers are popular among some developing countries.
However, their amount of unregulated per image is only around
two hundred, even lower than the average number (415) of Android
8. Compared with the aforementioned notable manufacturers, these
manufacturers make as little customization as possible but have an
extremely high percentage of unregulated rules. We further noticed
that most of these rules are identical with the unregulated rules
spotted in earlier versions of famous manufacturers’ devices. For
instance, they still use coarse-grained attributes such as proc and
sysfs in their hal-related rules.

Furthermore, the high-low lines in Figure 5 indicate the differ-
ences between the phone models produced by the same manufac-
turers. Note that the carrier may affect the policy of the same model.
For instance, in Android 5, the policy of Samsung Note 3 for XAS
(USA), a.k.a. N900P, is different from that of MCT (Canada), a.k.a.
N900W. The unregulated percentage of the MCT is five percents
higher than that of XAS. Specifically, the significant differences in
their policy are related to the app process. It could happen when
writing corresponding rules for pre-installed applications.

6.2 RQ2: Why are the unregulated rules

introduced by policy developers?

To figure out why these unregulated rules are introduced by policy
writers and why they are classified as unregulated by SEPAL, we
review their original policy rules, from which the atomic rules are
extracted. We identify 7,111 distinct original rules and then distill
four main categories by manual analysis. Note that due to the wide
diversity of these rules forms, not all the unregulated ones could
be attributed to these categories.
1. Misuse of attributes. After reviewing these original rules, we
find that 692 of them are defined by coarse-grained attributes like
appdomain and netdomain. It suggests that many of the unregu-
lated rules are likely to be introduced unintentionally by the policy
writers. For example, a customized rule “allow domain domain lnk_file
(read, getattr, open)” allows ALL processes in the system to open and
readANY link files in the /proc/[pid]/ directories. Such a customized
rule almost certainly yield over-privileged or unnecessary rules
because tens of thousands of atomic rules will be introduced in
one statement. This could happen when the policy writer simply
accepted the output from audit2allow, a tool that converts denials
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in the logs into corresponding policy statements. Another type of
misuse happens in attribute assignment. For example, the AOSP
rules below show that character device files labeled as audio_device
are only allowed to be accessed by audio HAL domains.
# Declare attributes, assign them to domain "hal_audio_default"

typeattribute hal_audio_default hal_audio

typeattribute hal_audio_default hal_audio_server

# Allow hal_audio_default to use audio device

allow hal_audio audio_device:chr_file rw_file_perms;

# Only audio HAL may access the audio hardware

neverallow { halserverdomain -hal_audio_server} audio_device:chr_file *;

However, in some Huawei devices, policy writer assigns the at-
tribute hal_audio to domain hal_ir_default via typeattribute hal_ir_default
hal_audio”, which enables hal_ir_default to gain a prohibitive priv-
ilege from the AOSP rules above. To the best of our knowledge,
domain hal_ir_default is used by an infrared-related server process.
Since the corresponding code is not available, we cannot figure out
why the infrared need to access the audio device. Even if it does
need it, hal_ir_default should only be granted the permissions it
needs, instead of granting all the permissions hold by hal_audio.
2. Testing and debugging related rules. Some of the rules in
AOSP are created for the purpose of factory testing or debug-
ging. These rules are usually declared by some macros such as
build_test_only and userdebug_or_eng, which are only compiled in
userdebug or eng builds. However, we noted that 308 manufacturer-
defined original rules recognized as unregulated ones are actually
defined by these macros in AOSP, which should not appear in
release versions. Table 2 lists some examples of the rules.
3. Deprecated rules. As we illustrated in Section 2.2, the policy
may change significantly along with the evolution of the Android
system. Rules that are incompatible or possibly risky are likely to
be removed from AOSP. Retention of these rules may pose risks for
Android devices. In our dataset, we find 393 occurrences of depre-
cated rules in the versions where they should not be present, 193
of which for Android 6, 50 for Android 7, 104 for Android 8, and 46
for Android 9. It suggests that manufacturers may not update their
SEAndroid policy in time. For instance, rule “allow init kernel:security
load_policy” allows init to reload sepolicy in Android 4.3. This rule
is utilized to bypass SEAndroid in the wild [44], thus has already
been removed from Android 6. However, it is still spotted in some
devices of Android 7 and Android 8. It is known that the Android
device can patch the known vulnerabilities through the monthly
device updates, however, it seems not easy for manufacturers to
update their SEAndroid policy rules in time.
4. Excessive permissions to untrusted domains. Domains such
as untrusted_app and isolated_app are assigned to third-party app
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Table 2: Examples of testing and debugging related rules

Examples of unregulated manufacturers rules Corresponding definition in AOSP Annotations

allow su * All the su-related definition are defined by userdebug_or_eng. su is assigned to superuser process, which should not appear in released version.
allow audioserver media_data_file * userdebug_or_eng(‘allow audioserver media_data_file:dir create_dir_perms;’) access debug related files for TEE sink - pcm capture.
allow untrusted_app perfprofd_data_file file * userdebug_or_eng(‘allow untrusted_app_all perfprofd_data_file:file r_file_perms;’) access perfprofd output in /data/misc/perfprofd/.
allow mediaserver mediaserver process ptrace userdebug_or_eng(‘allow mediaserver self:process ptrace;’) ptrace to itself for memory leak detection.
allow *_app heapdump_data_file file * userdebug_or_eng(‘allow appdomain heapdump_data_file:file append;’) dumpsys related functions about sending heap dumps to system_server

processes. Theoretically, these apps should not require any device-
specific rules. However, nearly 10% (3,287) of the unregulated atomic
rules are related to these domains like the below rules.
#Read runtime information in procfs:

allow untrusted_app proc_stat file (read)

allow untrusted_app kernel file (read)

# Read runtime information in sysfs:

allow untrusted_app sysfs_net file (read)

# Access to device node:

allow untrusted_app input_device chr_file (ioctl)

# Access to system service:

allow untrusted_app meminfo_service service_manager (find)

Note that prior research [18] detects privileged file access issues via
a hand-crafted label set of privileged ordinary files. However, the
boundary of “privileged” and “unprivileged” is blurred, especially
when the number of types has significantly increased with the
evolution of SEAndroid, while our learning-based method helps us
get rid of the difficulty of manually constructing privileged file set.

6.3 RQ3: What are the security impacts of

unregulated rules?

The official documents of SEAndroid [15] claim that unnecessary
rules can lead to the waste of memory and disk space, and also
prolong the runtime policy lookup times. Besides performance, we
are more concerned about the potential security impacts caused
by these unregulated rules. According to the documents [15], SE-
Android takes effects in the following ways: 1) protect and confine
system services; 2) control access to application data and system
logs; 3) reduce the effects of malicious software; 4) protect users
from potential flaws in code. However, all of them can be com-
promised by the unregulated rules we found. In this section, we
demonstrate how the unregulated rules downgrade these original
defenses mentioned above accordingly. In addition, we implement
two attacks as proof of concepts, one of which is acknowledged by
the manufacturer and patched in the later versions.
1. System service exposure. Services are designed to supply
cross-application functionality in Android. Permissions “add” and
“find” are defined upon class service_manager to confine service
registration and handler acquisition. A robust policy should well
protect and confine system services. However, some privileged ser-
vices are found to be accessed by user-level processes. We find that
system services such as meminfo service, and lock_settings_service

are exposed to untrusted_app in some Android 8 devices, granting
extra permissions to third-party apps. Here, we use the lock setting
service as an example to show how the rule leads to an attack.
Locksetting Attack. The “lock_setting_service” is a type assigned to
the screen lock pattern/password related processes. By communi-
cating with the service, one client can set the lock pattern/password
or test the existing password set by the user. Such a sensitive service
should only be available for trusted processes. But an unregulated
rule “allow untrusted_app lock_settings_service (service_manager (find))”
is spotted in an ASUS device of Android 8. To evaluate the security

impact of this rule, we prepared an Android (AArch64) emulator
for testing. We added this rule into the emulator and supposed that
the attacker had full control over an untrusted app process, which
could be achieved by installing a malicious application on the target
device. To communicate with the target service, we utilized the
“locksettings” program provided by stock Android. However, the
service process contains a UID-based check that only allows root
(uid=0) or shell (uid=2000) users to use the lock setting service.
To bypass the DAC checks in the service, we develop an exploit
using CVE-2017-7533 to modify the user id to 0. After that, we can
successfully set and reset the pattern/password in our app process.
2. Sensitive file exposure. An unregulated rule may compromise
the protection of sensitive files provided by SEAndroid. Files located
in “sysfs” and “procfs” partitions reflect the system status. Reading
these files may not lead to direct damage, but can be leveraged to
perform a side-channel attack of inferring text input, apps running
status in the foreground [20, 42], and behaviors performed in a
browser [28]. Rules such as reading the information of process zy-
gote may leak the memory layout and the runtime status of system
daemons, which is a necessary step for vulnerability exploitation.
Furthermore, we notice that in some Samsung and Panasonic de-
vices, third-party apps are allowed to run dumpstate, a tool designed
for root/shell users to monitor the status of all the processes. It could
even be used to take screenshots without notification.
Camera Driver Attack. Device nodes in /dev (e.g., video_device, in-
put_device) are the user interfaces to the hardware-specific device
drivers. Processes in the application layer should only be allowed
to communicate with these privileged drivers through framework
services. However, we find these character files are exposed to un-

trusted_app in some devices: “allow untrusted_app video_device chr_file
(ioctl read write getattr append open)”. In SEAndroid, type video_device
is assigned to character files of the camera device node in the /dev di-
rectory of the system. In theory, exposing these files to applications
allows app processes to use the camera without any permission.
However, it is non-trivial in practice because the hardware code
is not open source. Without knowing how the driver works, we
cannot control the camera. But a denial-of-service attack could be
launched based on the ioctl commands defined in the V4L2 frame-
work. The invalid parameters sent to the camera driver via ioctl will
crash and reboot the device. In our dataset, such rules are spotted
in 26 images, of which 25 are found in Samsung Android 5 devices
and the other one is found in a Kaicom Android 8 device.

Prior research [48] shows that in some earlier Samsung devices,
these character files are not protected by LinuxDAC (the permission
bits are 666). It means unregulated rules will completely expose
these character devices to attackers. Even if the permission bits of
DAC is configured correctly, the unregulated rules can also lead to
an attack when the DAC is compromised.
3. Capability extension of malicious apps. Object classes such
as capability and system can be used to manage the Linux capabili-
ties granted to root processes. These classes can provide powerful
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capabilities when the subjects are compromised [1]. However, we
find that some unregulated rules even grant these capabilities to
third-party apps. For instance, they allow the untrusted domains
to load kernel modules, make stack/heap of init executable, and
control system network via net_admin capability as follows: “allow
untrusted_app untrusted_app capability (net_admin setuid setgid)”, “allow
isolated_app init process (execstack execheap rlimitinh sigkill setsched)”.
Such behaviors have nothing to dowith an ordinary app but can pro-
vide a great convenience for malicious apps to control the system.
All these rules are spotted in Redmi 3s and ZTE BA520 obtained
from the same website. We inferred that these “stock” images might
be repacked and uploaded by malicious ROM developers thus we
reported our concerns to the website manager.
4. Feasible paths for vulnerability exploitation. One of the key
principles of SEAndroid is providing careful attack surface man-
agement to prevent vulnerabilities from being exploited. However,
customized rules may enlarge attack surfaces. There is a variety
of socket families in the Linux kernel, and an abuse of these sock-
ets will offer an additional opportunity for attackers to escalate
privilege [41]. For example, CVE-2017-7184 is a vulnerability in
Linux kernel that requires the use of netlink_xfrm_socket by pro-
cess netmgrd. It means attackers cannot exploit this vulnerability
unless they compromise process netmgrd. However, we find that
some app domains are allowed to use this socket in manufacturers’
devices, which makes it possible to trigger the issue from unpriv-
ileged processes. Rules related to other families such as netlink
route sockets, ping sockets and unix stream sockets are also found
in some earlier Samsung devices. These rules can be utilized as
potential escalation paths in the kernel vulnerability exploitation
once the corresponding domains are compromised.

7 DISCUSSION

Response from vendors. We have reported unregulated rules
found in the devices of the latest Android versions (i.e., Android
8 and 9) to seven vendors–ASUS, Haier, Huawei, Meizu, Oppo,
Samsung, and Xiaomi. As of this submission, we have received
replies from four vendors, all of which confirm our findings. Some
unregulated rules have been removed from their latest devices as
suggested, and the others are retained. According to the feedback
from these vendors, we summarize two difficulties for vendors in
handling these unregulated rules: 1) Unknown security impacts by

these rules. Due to complexity, it is challenging to measure the
influence of one single rule on the system. This can be mitigated
if a proof-of-concept is developed for validation. 2) Unpredictable
dysfunction by rule removal. Since one rule is used to regulate the
permissive behaviors of subjects, removing themmay inadvertently
cause system failure or degradation. Therefore, developers have
to adjust the affected subjects if one rule is removed. However,
sometimes even the system developers may not understand why
these rules are introduced. Given this, it is urgently desired to
identify the security hazards of insecure rules and patch policy
automatically, which is a promising research direction.
Significance. Our study, together with the tool, is beneficial for
three stakeholders. Manufacturer policy developers can use SEPAL
to quickly identify the risky or unnecessary rules introduced dur-
ing customization. AOSP policy developers can refer to the issues

confirmed by manufacturers and make new neverallow rules to en-
hance security. Security analysts can use SEPAL to identify the extra
attack surfaces introduced in Android customization. For example,
the camera driver attack in Section 6.3 shows that unregulated rules
can triage the misconfigurations in DAC.
Limitations. Our approach suffers from some limitations. In par-
ticular, SEPAL relies on official policy rules for training. An error in
these rules, evenwith a low probability, can negatively influence our
training model. Moreover, our approach cannot cope with newly-
defined types. This is because SEPAL is a learning-based approach,
and inherently susceptible to the data that is never seen before.
To mitigate this, we can enhance the learned model by training
more rules introduced by both AOSP and OEMs. Third, we can only
extract the DAC information for subjects from configuration files
“*.rc” without a physical device. It can degrade our model training.
Even though a recent work BigMAC [21] can recover an approx-
imate filesystem state of a running system based on a firmware
image, DAC checks exist in the non-file objects are mot explicitly
declared thus are hard to identify (such as the DAC checks in the
lock setting service). Further, from the perspective of attacker, un-
regulated rules may not lead to real world attacks directly because
other security mechanisms such as DAC and seccomp can hinder
the process of exploitation. But from the perspective of system
developers, SEAndroid should hold even when the DAC fails [43].

8 RELATEDWORK

Study on SELinux. A line of research [24, 27, 39, 40] performs
security analysis on SELinux to figure out the unintended policy
rules. Zanin et al. [47] use a formalization way to represent SELinux
policy model and detect the conflicts in the rules. Guttman et al. [23]
and Jaeger et al. [26] further perform information flow analysis to
measure the policy. These studies try to harvest the conflicts in rules
via a predefined trusted base while we aim to find the unregulated
type pairs that should not be associated from a statistical perspec-
tive. Moreover, SEAndroid has an entirely different architecture
and attack surface, making traditional methodology for SELinux
not suitable for Android. Performing system-level information flow
analysis is also not realistic for commercial Android devices since
we cannot modify the system as we need.
Study on SEAndroid. Reshetova et al. [36] and Chen et al. [18]
manually analyze SEAndroid policy rules from several devices and
propose some problematic patterns of the unregulated rules. An-
alyzing the policy rules based on the predefined patterns can get
highly explainable results, but it is extremely dependent on exper-
tise, and it cannot actively discover issues unknown to experts.
BigMAC [21] is a recent study that combines all layers of the DAC/-
MAC policy together in a graph. It performs analysis on firmware
images and can recreate the security state of a running system.
However, analysts might be confused about what to query, but our
machine learning method can automatically highlight the most
suspicious ones and then BigMAC can be used for further manual
analysis. Im et al. [25] performs a historical study on the evolution
of the AOSP policy. They call for the new technology to analyze a
large number of complex rules, which is exactly the same for our
study. Some of the related researches focus on the refinement of
policy via runtime logs and tests. EASEAndroid [46] uses machine
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learning to analyze million-level audit logs and generate new rules
automatically. The primary purpose of their research is different
from ours. They mainly focus on refining existing policy but we
aim to find new issues of the customized policy in the wild. Wang et
al. [45] performs a knowledge collection on SEAndroid based on a
function test toward Android application and framework. They use
the knowledge base for characterizing the attack surface of policy.

9 CONCLUSION

In this paper, we propose SEPAL to help manufacturers examine
their customized rules effectively. SEPAL learns the relationships
among official types by utilizing deep learning and NLP techniques.
The evaluation shows SEPAL can help to highlight the rules that
deserve attention among the massive number of customized rules.
It also yields several prior known issues that are recognized by
multiple vendors. Even though, SEAndroid has been deployed for
years, the large-scale measurement results suggest that the policy
writing in the wild is still in a mess. We hope our findings could
help to improve the customization of SEAndroid policy.
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