
CybersecurityMeng et al. Cybersecurity (2018) 1:4
https://doi.org/10.1186/s42400-018-0006-7

RESEARCH Open Access

DroidEcho: an in-depth dissection of
malicious behaviors in Android applications
Guozhu Meng1,2*, Ruitao Feng2, Guangdong Bai3, Kai Chen1,4 and Yang Liu2

Abstract

A precise representation for attacks can benefit the detection of malware in both accuracy and efficiency. However, it
is still far from expectation to describe attacks precisely on the Android platform. In addition, new features on Android,
such as communication mechanisms, introduce new challenges and difficulties for attack detection. In this paper, we
propose abstract attack models to precisely capture the semantics of various Android attacks, which include the
corresponding targets, involved behaviors as well as their execution dependency. Meanwhile, we construct a novel
graph-based model called the inter-component communication graph (ICCG) to describe the internal control flows
and inter-component communications of applications. The models take into account more communication channel
with a maximized preservation of their program logics. With the guidance of the attack models, we propose a static
searching approach to detect attacks hidden in ICCG. To reduce false positive rate, we introduce an additional dynamic
confirmation step to check whether the detected attacks are false alarms. Experiments show that DROIDECHO can
detect attacks in both benchmark and real-world applications effectively and efficiently with a precision of 89.5%.

Keywords: Semantic attack model, Android malware detection, Inter-component communication graph,
Privacy leakage

Introduction
Nowadays, Android malware detection is facing two crit-
ical challenges: 1) how to design a precise and efficient
model to represent malware; 2) how to reduce false alarms
and distinguish real malware from benign applications.
Android malware varies in many aspects such as attack
targets, attack methods, and applied obfuscation tech-
niques. For example, Android malware may steal users’
sensitive information (Grace et al. 2012; Arzt et al. 2014a),
elevate their privilege (Xing et al. 2014; Gunadi and Tiu
2013), deplete device resources (Vekris et al. 2012; Pathak
et al. 2012), and remote control users’ devices (Zhou
and Jiang 2012). Malware may accomplish attack mis-
sions either individually or collaboratively (Octeau et al.
2013; Bosu et al. 2017), perform attacks only once or
periodically (Zhou and Jiang 2012), and be triggered by
the installation or a broadcast message. In addition, mal-
ware may adopt several mechanisms to bypass the detect

*Correspondence: mengguozhu@gmail.com
1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
2Nanyang Technological University, Singapore, Singapore
Full list of author information is available at the end of the article

ion of security analysts and antivirus software, such as
PROGUARD (ProGuard 2017) and reflection (Zhou and
Jiang 2011). All of these raised challenges for the existing
detection approaches to reach a desirable precision and
scalability simultaneously.
On the other hand, it is challenging to eliminate

greyware from malware (Symantec Inc. 2017), espe-
cially when they are requesting privileged permissions
for accomplishing specific functionalities. For instance,
WECHAT, one of the top-ranked applications in Google
Play, requests permissions of reading SMS messages and
accessing network simultaneously. It may raise the con-
cern of security analysts since it is speculated as a poten-
tially malicious behavior which sends SMS messages out
to the network. However, the fact is that it only reads
the SMS messages from its remote server for the two-
factor authentication use. Similar cases are pervasive on
Android: weather applications show the weather situa-
tion and forecast to users, and thereby, need to read and
send out users’ location information; social applications
may ask for users’ contacts to find friends quickly; fit-
ness applications sometimes access the sensors in order
to measure users’ exercise. Therefore, the detection based

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-018-0006-7&domain=pdf
mailto: mengguozhu@gmail.com
http://creativecommons.org/licenses/by/4.0/

Meng et al. Cybersecurity (2018) 1:4 Page 2 of 17

on an imprecise and coarse-grained malicious behavior
model would lead to a high false positive rate.
Even with a precise model of malicious behaviors, mal-

ware searching in applications with static approaches is
not easy. New execution paradigm, system libraries and
rich communication features provided by Android have
facilitated the development of rich-functionality applica-
tions. On the other hand, however, they also make static
analysis of application more complicated and difficult,
which are summarized below.

• Implicit Execution Sequence. Android framework
provides a variety of program execution
environments, callbacks and control frameworks for
each Android component1. It is known as lifecycle.
For example, after an activity is started by the system,
it will execute the methods onCreate(),
onStart() and onResume() in proper order,
which cannot be observed from the application code;

• Various Triggers for an Application. There are
many ways for an application to interact with the
external environment. The application can be
triggered or impacted by users’ GUI operations (e.g.,
clicking a button). It can register a broadcast receiver
to respond once a broadcast message arrives. In
addition, local sensors can drive the application to
run in a pre-defined way. On the other hand, an
application can be started and driven via remote
messages, such as Google Cloud Messaging (GCM),
HTTP response, and an incoming SMS or phone call;

• Complicated Communication Mechanisms.
Although each application is running in a separated
sandbox, Android provides them various ways to
communicate with each other. For instance, the
Intent model (Octeau et al. 2013) is the most
compelling method for component communication.
Additionally, applications can define bound services,
for example, an AIDL (Android Interface Definition
Language) interface, and implement a Binder or a
Messenger to accomplish the communication even
between different processes or applications.

To overcome the above challenges, we propose an inte-
grated framework called DROIDECHO to analyze Android
applications. First, we summarize the features of attacks
happening on the Android platform, and propose a novel
attack model. The model illustrates a variety of attack
types at an abstract level, which is platform-independent.
In particular, an attack is composed of: assets, which
are the targets of attacks; actions, the execution oper-
ations performed on assets, and triggers, of which one
entrance to the app that leads to the attack behav-
iors. Then we specialize the attack model into attack
instances which are close to the Android platform, and

can be utilized to guide our detection of attacks in a
precise way.
Meanwhile, we transform Android applications into a

comprehensive graph, incorporating call graphs between
methods, and control flow graphs as per method. We
conduct an in-depth static analysis through the graph
with the guidance of attack model, and generate a full
path with the trigger and the predicates that guarantee
the occurrence of these behaviors. The detected malicious
behaviors will be filtered by two conditions: if a seemingly
malicious behavior is triggered by the user, it is likely that
the behavior is user-intended, which we regard it as being
harmless; presence of suspicious behaviors does not mean
there is a real attack. It happens because some applica-
tions indeed need to carry out several seeming “malicious”
behaviors to fulfill their tasks with good purposes. This is
learnt and induced by investigating a group of applications
under the same category or being similar. We make use
of the mined social knowledge to filter out these harmless
behaviors with a high level of confidence, i.e., these behav-
iors are likely a necessary part for applications. It does not
only facilitate the efficiency of detection, but also reduce
false positive in practice.
After the identification of malicious behaviors, we pro-

pose an approach to confirm the detected attacks with the
dynamic execution. Our dynamic analysis is driven by the
attack traces generated previously, and provides a satisfied
condition to guarantee the program to proceed along the
trace. The dynamic execution reproduces the occurrence
of attacks, and makes the attack detection more precise.
Different from the existing research on static analysis

based approaches (Arzt et al. 2014a; Arzt and Bodden
2016; Xu et al. 2016; Wei et al. 2014), our work starts from
the comprehension of Android malware by constructing
semantic models. To reduce the false positive rate, we
propose an approach to confirm attacks complying with
the identified executed traces. To sum up, we make the
following contributions:

• Attack modelWe propose a novel representation, to
characterize malicious behaviors. An attack in the
model is constituted of target assets, execution
actions, triggers, execution flows and apps’
declaimers. It can facilitate the understanding of the
essential features of attacks, and the detection of
malware.

• Accurate attack detection approachWe propose a
richly descriptive representation, named ICCG, to
depict an Android application, with a maximal
preservation of information. Based on ICCG, we
design a synthetic approach to identify a malicious
application by considering both the engineering
aspect and the social aspect. A reduced but sufficient
static analysis is to prove the presence of suspicious

Meng et al. Cybersecurity (2018) 1:4 Page 3 of 17

behaviors, then confirmed with the help of the learnt
social knowledge.

• Attack Confirmation After the identification of
malicious behaviors, we conduct a confirmation
process to prove the existence of a real attack with
dynamic execution. The dynamic execution is fed
with the traces of malicious behaviors generated by
DROIDECHO, and further identifies the satisfiable
conditions. Then it drives the application to execute
along the traces, and thereby reproduces the attacks
for confirmation.

• EvaluationWe have evaluated DROIDECHO on the
malware benchmarks (i.e., GENOME and
DROIDBENCH), and 7,643 real world applications. It
shows that DROIDECHO outperforms the
state-of-the-art tool. Moreover, we have found out
444 applications with malicious behaviors in Google
Play, and have a competitive edge in precision of
89.5% to the counterpart approaches and tools.

Organization
Section Semantic model of attack proposes abstract
models for various attacks in Android. Section The inter-
component communication graph describes a represen-
tation for Android applications. Section System design of
DroidEcho presents our approach in malware detection.
Section Evaluation gives a comprehensive evaluation for
our approach. Section Discussion discusses the experi-
ments and limitations of our approach. Section Related
work summarizes summarizes relevant literatures, and
Section Conclusion concludes this work.

Semantic model of attack
In this section, we first give an in-depth discussion on
the attacks happening on the Android platform, and then
provide a formal description of these attacks.

Building blocks
An attack on the Android platform has its unique features
and characteristics. It has a variety of attack targets, and
includes a sequence of actions that often leverage the
APIs provided by Android. In order to depict these ele-
ments of an attack, we start with introducing the building
elements of attacks and their representative examples
on Android, in order to construct a general and formal
definition of attacks.

Assets
Assets are referred to hardware, software and information
on Android devices, which are the targets of attacks. For
example, contact information is an important asset, which
attackers aim to steal and make use of for malicious pur-
poses; front light is a battery-consuming hardware such
that some malicious applications may acquire it without

releasing to exhaust battery quickly. On the Android plat-
form, all the assets we concern about can be accessed by
invoking certain system APIs. We list the representative
examples of these assets on Android as follows.

• Information Assets: Identity code, Contact, SMS
messages, File system, Location, System setting, etc.

• Software Assets: Phone service, SMS service,
Package Manager, Download Manager, Broadcast
service, etc.

• Hardware Assets: Camera, Media, Sensor, etc.

Actions
An attack action is an operation performing on a cer-
tain asset with the purpose of acquisition, tampering and
interception, e.g., to fetch the IMEI code of the mobile
phone.

Category According to the type of the target assets,
actions can be categorized into several classes. For exam-
ple, an action can acquire, edit, or delete some informa-
tion stored on device; invoke, interrupt or stop a service
provided by Android; and occupy or release a hard-
ware resource. Therefore, the semantics of actions can be
uniquely specified by the association of the action type
and the target assets. In addition, there is a unique kind
of actions on Android which are used for communication
(see Section The inter-component communication graph
for more details). Within communication, there must be
at least one sender and one receiver, and the communi-
cation can occur between an application and the external
environment, or between two components in one appli-
cation. As a result, we summarize four actions related to
communication in the scope of application. Table 1 shows
the categories of actions covered in this paper.
Parametrization An action is often implemented by
invoking a set of system APIs. These APIs are orga-
nized with a certain dependency relationship. For exam-
ple, the action of retrieving data stored in a content
provider can be described as: obtaining an instance
of ContentResolver; specifying the URI of the tar-
get asset; and retrieving the data stored in this con-
tent provider. Every action of retrieving data in content
provider follows the above processes. And we provide
more details about this in Section Action recognition.
As a functional unit in the attack model, an action

usually has an input, an output or both. Let α be
an action, and β be an asset, then α(β) denotes the
input of the action α is the asset β , and α

β���
denotes the output of the action α is the asset β (refer
to Section Flows). A variety of concrete actions are
derived from parameterizing these actions with assets.
For instance, when acquiring the content of a content
provider, we can specify some assets as the target, such as

Meng et al. Cybersecurity (2018) 1:4 Page 4 of 17

Table 1 The category of actions on Android

Category Operation Action Example Corresponding Implementation

Information-based

acquire get SMS message ContentResolver.query(Inbox)

insert insert a contact ContentResolver.insert(Contact)

edit change system setting Wallpaper.setBitmap(Image)

delete delete local files File.delete()

Software-based

invoke call a number startActivity(Intent{tel:num})

interrupt block SMS messages abortBroadcast()

stop uninstall an app startActivity(Intent{pkg:app})

Hardware-based
occupy hold the wakelock WakeLock.aquire()

release release the wakelock WakeLock.release()

Communication

e_send send data to environment sendTextMessage(SMS)

e_recv receive data from environment getMessagesFromIntent(Intent)

i_send send data to other component startService(Intent)

i_recv receive data from other component getIntent(Intent)

ContactsContract.Contacts.CONTENT_URI and
CalendarContract.Events. As a consequence, two
actions are generated to fetch the contact list and events
in the calendar, respectively. Table 1 list 9 basic kinds of
actions, based on which more actions can be generated by
parametrization with explicit target assets.

Triggers
Triggers are events which are taken as inputs to an appli-
cation and lead to the occurrence of a behavior. Although
triggers, which occur during runtime, are unpredictable
for applications, the application can provide handlers to
subscribe and capture these triggers. Once the application
receives a subscribed trigger, it will go into the life cycle
and execute specific methods. In light of the awareness of
users, we present two sorts of triggers in the following:

• User Interaction. This kind of triggers are usually
GUI-related, which are visible to the operating users.
For example, when the user clicks a button drawn on
the screen, the behavior is triggered and starts to
execute. From this, the user can learn that the
behavior is caused by his/her click operation, and we
call it user-awareness. For simplicity, we assume that
users can know the behaviors from the context which
the user interaction causes.

• Environmental Inputs. There is another kind of
triggers which can drive the execution of an Android
application. The trigger could be the initialization of
the application, a broadcast message or registered
listeners to sensors. The whole process is free from
the involvement of the user, which means that the
user is likely unware of the execution of behaviors. As
a consequence, we classify malicious behaviors

triggered by environmental input as potential attacks
for a further analysis.

As suggested by (Yang et al. 2013; Chen et al. 2013),
behaviors that would never been executed until they are
triggered by the user interaction reflect the “intention”
of the user. Therefore, in this work, we assume that user
interactions will not trigger any malicious behaviors, i.e.,
potential attacks that are triggered by user interactions are
false positive. However, environmental input triggers can
proceed stealthily, preventing users from knowing them.
This kind of triggers usually bring in many security risks,
which are our main concern in this paper.
Since triggers are external objects that cause the exe-

cution of attacks, we can instead recognize e_recv (see
Table 1) to observe the arrivals of triggers. Specifically, the
listeners can be categorized in terms of types of triggers.
For example, onClick(View), onDrag(View,...)
and onKey(View,...) are the entry points of pro-
gram when a user interaction trigger comes. While
onCreate() and onReceive() are the entry points
for the boot of applications and a broadcast mes-
sage, respectively, which are regarded as environmental
inputs.

Flows
Actions have a flow relationship in between. It is a kind
of dependency relationship which is either directional or
contextual. The directional relationship indicates the cer-
tain order of execution, which has been defined in the
program logic for a specific task2; and the contextual
relationship can be described as a semantic connection
between two actions, for example, the input of an action is
the output of the other action3. Generally, the contextual

Meng et al. Cybersecurity (2018) 1:4 Page 5 of 17

relationship needs a transition of the negotiated data from
one participant to the other.
A flow can exist between the environment and an

action, and triggers are their negotiated data between
them. Take an incoming SMS message for example, if
an application registers a BroadcastReceiver for SMS
messages, once an incoming SMS message arrives, the
application will start to execute from the listener, and it
can also get the content of the message as input. There-
fore, there exists a directional and contextual relationship
between the environment and the action acquire(SMS),
i.e.,

A flow can also exist between two actions. After an
application gets an incoming SMS message, it can send
the message to a remote server via the Internet. In such
a case, it is a contextual flow between these two actions.
The flow guarantees the two actions perform on the same
SMS message. Therefore, we present the flow as:

Attack models
Based on the aforementioned building blocks for an
attack, we define different attacks in this section. In the
remainder of this section, we use the following notations.
E is the set of Environmental Input triggers; t is the trigger
of the attack and t ∈ E;Asset is the set of assets involved in
the attack; Let α be an action or a trigger, β be an action,
and γ be an asset. A flow is either a control flow denoted
as α → β , or a data flow denoted as α

γ
��� β .

Attack taxonomy
We conduct a comprehensive investigation of existing
attacks of malicious behaviors (Enck et al. 2009; Shabtai et
al. 2010; Enck et al. 2011; Zhou and Jiang 2011; 2012), and
propose a taxonomy of attacks in terms of these building
blocks and semantic information as follows.

Privacy leakage Privacy leakage (Enck et al. 2010; Grace
et al. 2012; Zhang and Yin 2014) refers to the exposure
of sensitive information on devices. As discussed in the
action part, such kind of information can be acquired by
specifying an acquire action, which is regarded as source
in the attack of privacy leakage. If there exists a data
flow from the return value of the acquire action to the
data sent out to the external environment by a com-
munication action, usually called sink, privacy leakage
happens. In addition, the attack needs to happen without
users’ awareness, and it is not necessary for the trigger to
have a dataflow relationship with these two actions. As a
result, the formal attack model of privacy leakage can be
defined as:

PL = t−→ e_recv → acquireacquire
γ
��� e_send(γ)

γ
���

Information interception Mobile devices can interact
with the external environment in many ways. However,
malicious applications intercept the communication, sus-
pend, or even break off the communication. The common
attacks include blocking an incoming SMS messages and
phone calls. For such kind of attacks, malicious applica-
tions need to register a listener (i.e., e_recv) for broadcast
messages of incoming messages and calls, which stops
the spreading (i.e.,intercept) to avoid the messages from
reaching to other applications or the user.

II = t��� e_recv → intercept(γ)

Content tampering Malicious applications may tamper
content on mobile devices, such as contact, SMS, account,
and system settings. It can cause severe damages to the
user. Usually, an application can insert, update and delete
an item in a content provider with specific permissions.
In addition, it can change system settings such as network
connection, wallpaper and sleep time. We use insert, edit
and delete to describe such kind of behaviors. The trigger
of this attack will not give rise to users’ attention and does
not have any data flow relationship with these actions. The
attack is defined as follows:

CT = t−→ e_recv → α(γ), where α ∈ {insert, edit, delete}.

Service abuse Malicious applications may abuse the ser-
vices provided by Android (Luo et al. 2013). According
to our investigation, the most prevailing services which
are abused include phone service, SMS service, package
manager, and downloadmanager. For example, if an appli-
cation possesses the permission of sending SMSmessages,
it can subscribe a premium-rate mobile service which
causes users’ financial charge. Let α be the kind of actions
which abuses services, and the attack model can be pre-
sented as:

SA = t−→ e_recv → α(γ), where α ∈ {invoke, stop}.

Resource depletion Due to portability and simplicity,
mobile devices usually carry low-frequency CPU, RAM
of limited size and small capacity battery. Mobile devices
thereby can only provide a limited computation capa-
bility, storage and energy. It would make worse if any
installed applications occupy these resources immoder-
ately, which can influence other applications, and even the
battery life of the device. Either intentionally or uninten-
tionally, applications keep consuming resources (Pathak
et al.; 2012; Vekris et al. 2012) or carry on useless and
endless works (Oliner et al. 2012; Hao et al. 2013), while
never release or stop them. Let occupy be the kind of
actions which exhausts resources, and release be the kind

Meng et al. Cybersecurity (2018) 1:4 Page 6 of 17

of actions which releases resources. And we use � to
show amissing flow between these two actions. The attack
model is given in the following:

RD = t−→ e_recv → occupy(γ) � release(γ)

Discussion
The taxonomy of attacks is based on the 102 malware
families we have studied. However, there are some attacks
out of detection of our approach, such as fishing, adware
and privilege escalation. Fishing is a kind of attacks in
which one application disguises an authentic and legiti-
mate application, and induces users to enter their creden-
tials of, for example, bank account (Prince). Adware is a
program that displays advertisements to its users, which
is annoying rather than harmful at most of time (F-Secure
Lab 2013). Some applications may exploit the vulnerabil-
ities of Android, such as Exploid, RATC/Zimperlich and
Ginger Break (Xuxian and Yajin 2013), to elevate the priv-
ilege once installed on device; Pilup (Xing et al. 2014) is
a newfound flaw in Package Management Service which
can be exploited by malicious applications only during the
phase of upgrading the Android OS. At last, side chan-
nel attacks (Schlegel et al. 2011; Hilgers et al. 2014; Chen
et al. 2014), which collect memory information or timing
information, are not our scope of attack detection.
The insufficiency of DROIDECHO comes from two

aspects: 1) our static analysis is carried on Java code, and
does not go inside the native code. Many of malware of
privilege escalation utilize native code to elevate the privi-
lege; 2) we try to avoid tomake a subjective judgement, but
prefer to detect an objective existence of malicious behav-
iors. That is, fishing and adware just deceive and bother
users respectively, which do not violate security policies
(Enck et al. 2009) of Android precisely. We give the statis-
tics of attacks mentioned previously in Table 2, indicating
that our approach can detect up to 90.4% of attacks in
theory.

Disclaimers
There is a significant exception for determining an attack
- disclaimers. A disclaimer is a white list for an application

Table 2 The category of attacks on Android

Attack Percent Supported by DroidEcho

Privacy Leakage 31.4 �
Information Interception 11.6 �
Content Tampering 13.4 �
Service Abuse 31.4 �
Resource Depletion 1.8 �
Fishing 1.7 ✗

Adware 2.3 ✗

Privilege Escalation 6.4 ✗

in which some behaviors are excluded from considera-
tion for the determination of attacks. The violation of
certain security properties cannot imply the occurrence
of attacks. Some applications may need to carry on some
suspicious looking behaviors which they already claimed
the potential security violation explicitly. We conclude
that the users who install their applications would like to
undertake the introduced risks by default. Therefore, in
this work, we filter out the “attacks” that are allowed by the
users, and remove them from the generated attack report.

The inter-component communication graph
For an accurate representation of Android applications
and the convenience of attack detection, this section
presents the proposed the inter-component communica-
tion graph (ICCG) to capture all possible communications
between components and threads inside Android applica-
tions.

Android communication medium
Medium is a special data structure used for commu-
nications. The communications can occur between
either two components (i.e., activity, service, broad-
cast receiver and content provider), or two isolated
processes. Medium is playing a critical role in
the behavior of Android applications. Besides the
frequently-talked Inter-Component Communication(ICC)
(Orthacker et al. 2011; Schlegel et al. 2011), which is based
on the Intent medium, there are three other mediums
which can be also used during the communication. Here
we provide the different types of mediums existing on the
Android platform.

Intent Intents are the main vehicle for communication.
One intent can be either explicit or implicit. Explicit
intents have a specific class to start, while implicit intents
do not specify the corresponding class, and the sys-
tem will select the most well-suited class or application
to execute. An explicit intent can only invoke a spe-
cific component, which is defined in the constructor,
or by calling setComponent(ComponentName) or
setClass(Context, Class); an implicit intent can
be received by many well-suited components. It appoints
potential receivers by setting an action in the construc-
tor or setAction(String) (Meanwhile, it can be
instrumented with a data type to restrict its receivers)
(Feng et al. 2014). Intent can influence the execution order
(a.k.a., control flow) of the application, and also impact on
the data flow if enclosed with extras.

Message Message is a concise data structure for arbitrary
data. Two isolated processes or threads can communicate
with each other by transferring a message. In general, the
message receiver has to create a Messenger to handle the

Meng et al. Cybersecurity (2018) 1:4 Page 7 of 17

received messages. On the sender side, it needs to obtain
the reference to this Messenger, and sends its crafted
message by invoking send(Message message) of the
Messenger. In order to send a message, for example, to a
daemon service, the component can first bind to this ser-
vice via bindService(), and then fetch the reference
to theMessenger from the returned Binder object.

Binder Binder is used for a component to talk to a dae-
mon service. The component which attempts to bind to a
service needs to invoke bindService() and implement
ServiceConnection, which establishes the connec-
tion with the service. On the service side, it needs to pro-
vide an inherited class of Binder, exposing public methods
to customers; or design an AIDL interface as well as the
implementation. After that, the component can obtain a
binder object, which is a remotable object for a lightweight
remote procedure call. In addition, AIDL can be exposed
to other applications for remote invocations.

Persistent storage On Android, applications may
exchange data through persistent storage. There are three
types of persistent storage: File, Shared Preferences and
SQLite database. They can be used for applications or
components to exchange data, that is, they provide an
implicit data flow from one component to another.

Inter-component communication graph
Definition 1. Let M be the communication mediums
existing on Android. An ICCG is a directed graph defined
as G = {V ,Ef ,Ec},where V is a set of nodes; Ef : V × V
is a set of flow edges; and Ec : V × M × V is a set of
communication edges.
The nodes of a graph are the methods contained in

the application, which come with two levels of granular-
ity. The coarse-grained nodes only represent the signature
of the functions, and help to express the relationship
between functions in the system level. We can learn the

method invocation relationship and possible communica-
tions between different functions. In the fine-grained level
of granularity, a node is in-depth dissected and shows the
internal logic, i.e., control flow. When we are identifying
the elements of attacks, especially behaviors, we need to
go in deep at the code level, and recognize the different
patterns of behaviors.
We employ two different kinds of edges to denote the

relationship between nodes - call relationship and com-
munication relationship. Flow edges reflect the call rela-
tionship among nodes. This is the primary concept in
the program analysis, which consists of explicit calls and
implicit calls. Here we emphasize the unique implicit
calls, i.e., Android Lifecycle, existing on Android. An
Android lifecycle indicates an implicit function invoca-
tion between different methods or classes. The implicit
calls are either callbacks passed to a concrete method,
or control frameworks specifying a call sequence. Besides
the lifecycle features of standard Java, e.g., the method
void start() of one thread instance will implicitly call
the overridemethod void run(), Android has included
many libraries to support an amount of implicit calls. For
each component of Android, it has a unique call sequence
pre-defined by Android. In addition, all GUI components
on Android allow developers to pass a callback to execute
functionalities when the corresponding event occurs.
The communication edges are connecting between

nodes and mediums. As defined previously, there are four
kinds of mediums used for communication, and it is worth
mentioning that the communications are not only show-
ing the logic order of execution, some of them also enclose
data which can be transferred from one node to another
node.
We use the DroidKungFu malware4 as an example to

explain the ICCG. As shown in Fig. 1 (a), there are an
activity and a service, which communicate via an Intent
medium. The activity obtains sensitive data (refer to 1© in
onStart), and passes the data to the service. Then the
service sends the data out at 2© in onCreate. Figure 1

Fig. 1 An example of malicious behaviors and the corresponding ICCG. a The snippet code of malicious behavior b The corresponding ICCG of the
code

Meng et al. Cybersecurity (2018) 1:4 Page 8 of 17

(b) shows the constructed ICCG based on the code. As
discussed in the previous section, each node represents
a method of the application, and contains a control flow
graph. The nodes are connected by two kinds of edges:
Android mediums (e.g,. the Intent object) and method
invocations either implicit invocations (e.g., lifecycle) or
explicit invocations.

Sufficiency of ICCG
We construct ICCG for representing the overall structure
of functions in the application, and search if any attack
model is hidden in the graph. As the attack model pro-
posed in Section Semantic model of attack is general and
platform-independent, we show the sufficiency of ICCG
to detect attacks below.
As modeled in Section Semantic model of attack, an

attack is a set of operations which the attacker performs
to achieve a certain objective, and it is composed of 5
essential elements. ICCG retains almost all program infor-
mation, and we can extract a number of call sequences
from it. By checking each call sequence, we can recog-
nize actions which are attack related, identify the trigger
of it, and perform data flow analysis on the call sequence.
Hence, we could find a mapping from the attach model
to the ICCG, which means that ICCG contains sufficient
information to detect an attack inside.

System design of DroidEcho
This section presents the design of DROIDECHO. As
shown in Fig. 2, DROIDECHO takes as input an Android
application, which contains the class files, the manifest
file and the description of its functionality. DROIDE-
CHO will generate an attack report which contains identi-
fied malicious behaviors and the corresponding traces of
these behaviors for forensic use. DROIDECHO leverages
the attack model which is presented in Section Seman-
tic model of attack as the guidance for attack detection,
and proceeds in four phases: disclaimer learning, ICCG

construction, attack detection and attack confirmation.
The first phase disclaimer learning receives the descrip-
tive text of applications as input, and generates a white list
of “necessary” behaviors (a.k.a., disclaimer of the applica-
tion) in a supervised manner. The white list will be used to
exclude the detection for the claimed functionality of the
application. Second, ICCG construction takes class files
and the manifest file of the application as input, and con-
structs an ICCG, which is then passed to the third phase.
Attack detection can find out, if any, existing attacks and
the corresponding traces which cause these attacks in the
application. At last, attack confirmation receives the can-
didate attacks, and determines whether one attack candi-
date is a false positive or not by a trace-guided dynamic
execution.

Disclaimer learning
Some Android applications may perform seemingly sus-
picious behaviors while they are actually demanded to
accomplish the functionality. The demanded function-
ality and the risks it may bring are usually claimed in
their descriptive text. We regard this as a benign behav-
ior (henceforth disclaimer), and it will not be considered
as an attack candidate. For example, TripAdvisor is a
travel application, which can provide the nearby restau-
rants and hotels when the user is travelling. For ease of
use, it acquires the permission FINE_LOCATION to learn
the user’s location such that it can provide the most suit-
able information for the customers. Although we detect
that TripAdisor has a privacy issue, which sends the user’s
location to a remote server from time to time, we regard
this as being benign and harmless.
As shown in Fig. 3, we obtain the descriptions of

applications and perform a description-to-permission
fidelity analysis (Qu et al. 2014). The fidelity analysis
builds a description-to-permission relatedness model in
which one permission is associated with a list of noun
phrases. For the description of a given application, we

Fig. 2 The architecture of the system

Meng et al. Cybersecurity (2018) 1:4 Page 9 of 17

Fig. 3 The learning process of disclaimers

can leverage this model to produce a list of requested
permissions. Then, we employ PScout (Au et al. 2012)
to elicit the corresponding APIs that request per-
missions. For example, the sentence “Your location:
These permissions are needed to obtain your location
so we can help you discover hotels, restaurants, and
attractions around you” in app TripAdvisor implies that it
requests for recognizing users’ current location the per-
mission android.permission.ACCESS_COARSE_LOCATION
and android.permission.ACCESS_FINE_LOCATION. There-
fore, 21 Android APIs (e.g., void requestLocationUp-
dates(float, LocationListener) and Location getLast-
KnownLocation(String)) are regarded as being necessary
to invoke by permission-to-api mapping.
The produced Android APIs serve as disclaimers to

refine the attack model. During attack detection (see
Section Attack detection), these APIs will not be consid-
ered as attack actions.

ICCG construction
The construction of ICCG takes class files and the mani-
fest file of the application to be checked as inputs. Primar-
ily, DROIDECHO employs Soot (Vallée-Rai et al. 1999) to
generate a rough call graph of the whole application and a
control flow graph for each method. Given that, DROIDE-
CHO proceeds in three steps successively: pointer analysis,
link analysis and graph assembling. The first two steps can
provide all auxiliary information to assemble an ICCG.

Pointer analysis
Pointer analysis is a static analysis to infer which vari-
ables are pointed to by pointer references or heap ref-
erences. In this step, we want to identify all references
which are pointing to variables in the application, and
all possible values which the variables can be assigned
to. The result of this step is a PointerTable, which
contains mappings from variables to concrete values:
Set(variables) → Set(values). Set(variables) denotes
a set of variables which are pointed to with the same

reference at a time, and Set(values) denotes a set of
possible values to which the variables can be assigned.
PointerTable plays a critical role in the step of link anal-
ysis and action recognition. During the step link analysis,
PointerTable is used to infer the actions and classes of
an Intent object, thereby DROIDECHO can identify which
components are able to receive this Intent. And DROIDE-
CHO needs the PointerTable to recognize the semantics of
actions during the action recognition. For example, when
DROIDECHO encounters an operation to query a content
provider, it needs to learn the value of the argument URI,
to distinguish different content providers.
Parts of our pointer analysis are based on SPARK

(Lhoták and Hendren 2003), which is a pointer analysis
framework. It can cluster the variables into several sets,
i.e., Set(variables), where all variables in the same set have
been pointed to with same reference at a time. Since we
have got a rough call graph and control flow graphs of all
methods, we traverse the call graph and go inside con-
trol flow graphs to perform value inference. We evaluate
each node in a control flow graph, and infer the possi-
ble values of the variables. The value inference can handle
basic arithmetic and String operations. In addition, we do
not evaluate all types of variables, which are both compu-
tation expensive and useless to our attack detection. We
only pay attention to the valuation of primary types (e.g.,
boolean, int, double), String, ComponentName, URI/URL
and Intent. It is worth mentioning that the values of Com-
ponentName and URI/URL objects can be expressed by
a String, while we construct a more complicated struc-
ture for Intent objects, which basically contains four fields:
action, class, data and category.
The pointer analysis used in this work is type-sensitive,

however, flow-insensitive. That is, every variable in the
same set needs to share the same data type with others.
In order to reduce the expense of storage and computa-
tion, we store all possible values which the set of variables
can be assigned to rather than only parts of them after a
certain statement.

Link analysis
Link analysis is to establish all links between methods or
components in an application, i.e., the edges in ICCG.
Primarily, the call graph generated by Soot only contains
the call relationship between Java methods. As introduced
in Section The inter-component communication graph,
there are implicit invocations and a variety of communi-
cation mechanisms on Android. On the basis of the call
graph, we analyze all links between methods and build a
complete communication graph for the application.
There are two kinds of links between two methods,

invocation links (either explicit or implicit) and com-
munication links via Android medium (e.g., Intent and
message). We first build call chains for the lifecycle

Meng et al. Cybersecurity (2018) 1:4 Page 10 of 17

of Android components. For example, one of the call
chains of Android Activity is onCreate → onStart
→ onResume, which shows the implicit invocations after
the start of the Activity. As a result, the above meth-
ods in the call graph will be linked with an invocation
edge, respectively. For communication links, we recog-
nize the mediums as well as their attributes existing in
the methods, and identify which components or methods
can receive these mediums. Take the Intent medium as an
example, if we find an action which starts activities, like
startActivity(Intent), we retrieve the attributes
(e.g., class and action) of the Intent object and identify
which activities can be triggered by this Intent object. As a
result, we add a new link between themethod which sends
out the Intent and the constructor method of the target
activities.

Graph assembling
By far, we have obtained the control flow graph for each
method of the application, and all links between these
methods. We take the control flow graphs as nodes, the
links as edges, and assemble them into an ICCG. The
graph depicts the execution order and communications
between different methods at the system level, and illus-
trates the control flow at the method level. Combined
with PointerTable, ICCG is passed to the attack detection
phase. Attack detection will search the graph and find out
any existing attack.

Attack detection
To reduce the search space of attack detection, we will
not analyze the program from its entry points. In con-
verse, we first recognize attack-related actions existing in
the program in a fast way, and perform a bidirectional flow
analysis from behaviors, which can effectively speedup the
search process.
Algorithm 1 shows the whole process to check whether

one attack is contained by the application or not. The algo-
rithm takes ICCG of an application, and one attack model
as the input, and outputs whether the attack model exists
in the ICCG. Line 1-3 show that it recognizes all actions
existing in the ICCG. If any of actions in the attack is not
contained in the ICCG, DROIDECHO concludes that the
application does not contain this attack. In our implemen-
tation, we conduct an one-time retrieval of the ICCG for
each application and store all recognized actions. By com-
paring the included actions in each attack, we can quickly
eliminate some attacks which will definitely not happen.
If all actions in the attack model are found in ICCG,

we proceed the reachability analysis and program slicing.
Since there are two kinds of flows (referred to control flow
and data flow in program analysis, respectively) defined
in our attack model, we carry on ForwardControlFlow-
Analysis (Line 10) and TaintAnalysis (Line 6) to determine

Algorithm 1:Model-based attack detection
Input: ICCG of the application
Input: Attack model {(actioni, actioni+1, data|control)}, where

0 ≤ i < n − 1
Output: if ICCG contains attack

1 for action ∈ attack do
2 if !(ICCG contains action) then
3 return false;

4 for i = 0 to #actions − 2 do
5 if flow(actioni, actioni+1) == data then
6 data_flow = TaintAnalysis(actioni, actioni+1, asset);
7 if data_flow is not satisfied then
8 return false;

9 if flow(actioni, actioni+1) == control then
10 control_flow = ForwardControlFlowAnalysis(actioni,

actioni+1);
11 if control_flow is not satisfied then
12 return false;

13 trigger := BackwardControlFlowAnalysis(action0);
14 if trigger ∈ {Environmental Input} then
15 return true;
16 else
17 return false;

whether the flows are satisfied or not. At last, we get the
trigger causing this attack (Line 13), and check if it is
a kind of environmental input, e.g., the initialization of
application, system broadcast message and a timer task. In
the following, we will give a more detailed description for
each step.

Action recognition
We use actions to describe the basic elements in an attack,
which is semantic but domain-independent. However, we
need to define a system of notations in a specific domain
(here Android), to capture these actions and triggers in
ICCG. On Android, we recognize an action by the cor-
responding constraints. Here we define three kinds of
predicates to express APIs and constraints in these actions
we met in the code: sig(api), type(arg), and value(arg),
where api is an Android API, arg is a variable, and these
predicates will return a comparable constant value. As a
consequence, action recognition can be transformed into
a satisfiability problem,

action |= sig(api) (1)

sig(api) |= type(arg) ∩ value(arg) (2)
One action is recognized if we detect some APIs which

satisfies the above constraints progressively. Equation 1
shows the action can be recognized with an API with the
specific signature, and moreover, the arguments or the
base, if any, need to satisfy two kinds of predicates, type
and value. As shown in Eq. 2, arg is either the base of the
API (static methods do not have a base), or the arguments.
Specially, arg may be another invocation of API, i.e., sig.
Therefore, we will recursively solve the constraints until

Meng et al. Cybersecurity (2018) 1:4 Page 11 of 17

the action is recognized. Taking the example of obtaining
contacts, the essential code at language level of this action
can be described as follows:

sig(api) = obj.query(uri, ∗)

obtain contact
(3)

type(obj) = ContentResolver,
type(uri) = Uri,
value(uri) = “content : //contacts"

sig(api) = obj.query(uri, ∗)
(4)

As shown in Eq. 3, we first need to find a pivotal func-
tion whose signature matches obj.query(uri, *),
and the methods need to meet three constraints: the base
of the invocation obj needs to be an object of the class
android.content.ContentResolver, the type of
uri needs to be an object of android.net.Uri, and
its value needs to be content://contacts as shown
in Eq. 4. The code statements, which together form a
behavior, might have dependency relationship or follow an
execution order in between.We deal with it as a constraint
satisfaction problem, and recognize a behavior with rea-
soning. The benefits are that we do not need to care about
the execution order of code in a behavior, and hence our
approach is more general so as to identify more variations.

Reachability analysis & slicing
If the ICCG contains all necessary elements for one attack,
we start to do program slicing from these elements. The
slicing consists of backward and forward control flow
analysis. The backward control flow analysis aims to com-
plete three tasks: 1) find the root cause that lead to such
action, i.e., its entry points. Based on the entry points, we
can infer the type of the triggers. Then we know whether
the attack is triggered by a user interaction or environ-
mental inputs; 2) obtain all conditions in a trace from
the entry points to the action. The conditions are used in

attack confirmation to guide the dynamic execution of the
application; 3) identify the search space for potential taint
analysis.
The forward control flow analysis aims to complete

two tasks: 1) determine the occurrence of the subsequent
actions in an attack model; 2) similar to the backward
control flow analysis, identify the search space for the
taint analysis. As a result, we will not search the entire
ICCG during the taint analysis, which is computationally
expensive.

Taint analysis
Taint analysis can track the flow of data during detection.
Taking privacy leakage as an example, we need to carry
on taint analysis to track the flow of data, and if the data
is flowed to a sink action and sent out eventually. During
the taint analysis, we get a domain set in a control-flow
order SearchDomain = D1 → D2, ... → Dn, and the
source action is located at Dsr after the above steps. Then
we perform a forward data flow analysis on the domain
set SearchDomain. Figure 4 illustrates the ways how the
data can be tainted cross domains. First of all, data in the
domain Ds can influence the data in its previous domain
by three methods: return the data at the call site in the
previous domains, referring to 1©; the data flow 2© shows
how the data in the latter domain influences the data in its
previous domains; and we can assign the data to one com-
monly shared variable between the domain Ds as shown
in 3©. There are three possible ways for the data in domain
Ds to influence the data in the successive domains: enclose
communication medium with data and pass it to the next
domains as shown by the data flow 4©; pass the data as
an argument to its successive domains, which are used in
these domains, referring to 5©; assign the data to a com-
monly shared variable in between as shown by the data
flow 6©. In addition, we take a coarse-grained aliasing
analysis in this paper, i.e., if for example a string variable

Fig. 4 Taint analysis across multiple domains

Meng et al. Cybersecurity (2018) 1:4 Page 12 of 17

is passed to a function, and this function will encrypt the
string and return a new encrypted value with a crypto-
graphic scheme. Although we do not know how to convert
the original string to the encrypted one (we do not infer
the meaning of cryptographic schemes), we can definitely
ensure the operation is reversible, and the returned data is
also of sensitive information.

Dynamic attack confirmation
As discussed before, DROIDECHO’s ICCG construction
and attack detection are based on static program analysis,
which is less precise than dynamic analysis. As a result, the
attacks reported by DROIDECHO may be false positives.
Therefore, we introduce a confirmation step to reduce
false positives, and the attack confirmation is based on the
technique of dynamic testing.
An attack candidate, which is passed from the attack

detection phase to the attack confirmation phase, con-
tains an attack trace and the conditions that guarantee
the occurrence of attacks. Given that, we simulate the
inputs to drive the dynamic execution of the applica-
tion and check whether the attack trace can occur in
the real execution. In order to activate the attack candi-
date and capture malicious behaviors, we first instrument
Android OS by hooking specific Android APIs which are
included in our attack model, and then generate the trig-
gers which are used to activate the contained malicious
behaviors.

• Instrumentation. Since the actions in attack model
are recognized as the invocations of specific Android
APIs, we instrument Android OS to monitor the
invocation behaviors. In this paper, we leverage
TaintDroid (Enck et al. 2010) to determine whether
these APIs are invoked.

• Triggers.We leverage IntelliDroid (Wong and Lie
2016) to generate all triggers leading to specific
malicious behaviors, and subsequently schedule these
triggers to drive the execution of the application. We
simply feeds the application with all possible trigger
sequences, and in order to eliminate the impossible
sequences (which never occur during the real
executions), we exploit the “happen-before” relations
among these triggers to generate sequences.

Obtaining these inputs, DROIDECHO is able to exe-
cute the suspicious applications to determine if the attack
is reachable. In order to make the exploration faster,
DROIDECHO prunes the paths which rarely lead to the
attack trace, which can significantly reduce the search
space of the program.

Evaluation
We implement an automatic platform DROIDECHO to
facilitate the detection, accordingly. DROIDECHO is writ-

ten with 17,038 lines of Java, and 163 lines of scripts
(Python and Shell). The dynamic confirmation is imple-
mented based on TaintDroid (Enck et al. 2010) and Intel-
liDroid (Wong and Lie 2016). TaintDroid enables us to
track the information flows of applications. In addition,
we customized TaintDroid for two purposes. First, we
intercept the APIs in our Action set to monitor whether
they are invoked by the tested applications. Second, we
intercept the APIs providing the applications with envi-
ronmental inputs, such as location and time information,
where we can return the applications values that would
activate the target behaviors. During the confirmation, we
employ IntelliDroid to generate the call paths for specific
Android APIs as well as conditions that enable the paths.
Then the driver script takes them as input to automatically
drive the execution of the suspicious applications. To esti-
mate the overall performance of DROIDECHO, we conduct
the experiments from three aspects: evaluation on mal-
ware benchmark, evaluation on real apps and evaluation
on performance.

Evaluation onMalware Benchmark
To evaluate the performance of our approach on the infa-
mous malware, we conduct an experiment on 1260 sam-
ples of malware of the collection (Zhou and Jiang 2011).
According to the types of malware, we filter out 108 of
them (e.g., Asroot, DroidCoupon andDroidDeluxe) which
only use native code to launch attacks. At last, we suc-
cessfully detect 940 (89.5%) samples, and also show the
attack type. There are mainly two reasons for the missing
malware: 1) some malware use reflection to dynamically
invoke malicious code. For example, AnserverBot loads
an executable file in its asset folder, retrieves the included
classes and runs the code. 2) some of them leverage com-
plicated obfuscation and encryption to confuse AV tools.
For example, Geinimi leverages several cryptographic
schemes (e.g., DES) to encrypt the communication and
strings.
In addition, we conduct an experiment to compare

DROIDECHO’s capability of attack detection with Flow-
Droid (Arzt et al. 2014b), which is a static tool in detecting
privacy leakage. The subjects of this experiments include
a set of open-source Android applications named Droid-
Bench5, of which the applications may contain the attacks
of privacy leakage.
DROIDECHO successfully detects 34 samples of mal-

ware, while fails to find 8 malicious samples. We provide
Table 3 to illustrate the comparison results, actually only
the different results, with FlowDroid. As shown in Table 3,
DROIDECHO has an edge in detecting the first six kinds
of privacy leakage, but cannot detect the last three kind
of privacy leakage. PrivateDataLeak-1&2 are two appli-
cations which steal the text in a password field of an
Android GUI view. Since the data on GUI components

Meng et al. Cybersecurity (2018) 1:4 Page 13 of 17

Table 3 Comparison with FlowDroid

App DroidEcho FlowDroid

ArrayAccess-1&2 TP FP

HashMapAccess1 TP FP

ListAccess1 TP FP

Ordering1 TP FP

Unregister1 TP FP

Exception-1&4 TP FP

PrivateDataLeak-1&2 FN TP

ImplicitFlow-1&2&3&4 FN FN

Reflection-3&4 FN FN

are hard to be determined to be sensitive, in addition,
applications which need authentication have to send cre-
dentials, such as user input from keyboard, to the remote
server for authentication. As a result, DROIDECHO does
not track the flow of the data on GUI components. And
last, DROIDECHO and FlowDroid both cannot cope with
the last two kinds of applications, where ImplicitFlows are
samples which leverage obfuscation techniques to confuse
the analysis, and Reflections are two samples which use
reflection to dynamically invoke methods or fetch fields to
complete the process of privacy leakage.

Evaluation on real Apps
We have collected 7643 applications from Google Play,
which are hot and free application in their respective cat-
egories. By running DROIDECHO, we find out 444 appli-
cations which have malicious behaviors. In addition, we
have done a statistics of behaviors which are user-awared
or already claimed by the description of applications. We
compare DROIDECHO with other anti-virus (AV) tools, by
uploading apk files into VirusTotal (www.virustotal.com).
Although AV tools have detected 1541 (20.2%) samples of
malware, most of them are Adware, of which the num-
ber is up to 1217 (79.0%). Due to the restriction of our
approach, we do not provide a detection for Adware. By
filtering these applications of Adware, we can also find 149
more applications which have malicious behaviors.
We investigate the 149 applications which contain mali-

cious behaviors, of which 131 applications have privacy
leakages, while the remaining applications have other four
kinds of malicious behaviors. In particular, 10 applica-
tions contain service abuse attacks, i.e., sending SMS
messages without users’ consent; 6 applications contain
content tampering attacks, i.e., deleting SMS messages
from the inbox; 2 applications are depleting battery by
holding Screen lock for a long time. By investigating the
code of these applications, we find that many of them
are employing a third-party library which has exposed
sensitive information. The third-party libraries may do a

measurement for the usage of applications, e.g., Flurry
and Crittercism, diagnose the crash of applications, e.g.,
Crashlytics, or advertise, e.g, Umeng and Google Ads.
Table 4 shows third-party libraries that are contained in
the applications.

False positive analysis To evaluate DROIDECHO’s accu-
racy, we randomly selected 50 samples, and manually
identified 4 false positives. Two false positives are because
DROIDECHO cannot well handle collection objects such
as array, list, and map. If any element in a collection
is tainted, DROIDECHO determines the whole collection
object is tainted. One false positive is due to the ignorance
of execution conditions of flows. The execution condition
may not be satisfied during runtime leading the malicious
behaviors cannot be practically triggered. The last false
positive is attributed to the insufficient modelling of per-
sistent storage. As an alternative communication channel,
persistent storage (e.g., file, database) might contains mul-
tiple dimensional data. It is non-trivial to track the flow of
data in the persistent storage, which will be further studies
in future.

Evaluation on performance
In order to evaluate the efficiency and scalability of
DROIDECHO, we measured runtime parameters in the
previous experiments. The runtime parameters consist
of the complexity of applications and runtime for each
phase of DROIDECHO. And the experiments are con-
ducted on a Linux Ubuntu 14.04 machine, carrying 12
cores of Intel Xeon(R) CPU E5-16500, and 16G Mem-
ory. We depict the complexity of applications from four
aspects: the file size of application, the number of nodes,
edges and mediums of the ICCG. We have measured the
runtime for pointer analysis, link analysis, action recogni-
tion and attack detection, respectively. The detailed data
can be found in Table 5. As shown in ColumnRuntime(ms)
of DroidEcho, DROIDECHO is very effective in detecting

Table 4 Privacy leakage via 3rd-libraries

Library Description Num Behaviors

Adobe Measurement of Usage 1 Identity Code, etc.

Flurry Measurement of Usage 20 Identity Code, Location, etc.

Conversant Measurement of Usage 1 Identity Code, Location, etc.

Crashlytics Diagnosis of Crash 8 Identity Code, Sys. Info, etc.

Map Service Map Service 5 Location, etc.

Crittercism Optimization Tool 1 Identify Code, etc.

Umeng Advertisement 4 Identity Code, Location, etc.

Google Ads Advertisement 3 Identity Code, Location, etc.

Amazon Ads Advertisement 1 Identity Code, Locatoin, etc.

Millennialmedia Advertisement 2 Identity Code, Location, etc.

www.virustotal.com

Meng et al. Cybersecurity (2018) 1:4 Page 14 of 17

Table 5 Evaluation on performance of DroidEcho

Size (K)
ICCG Runtime(ms) of DroidEcho

Runtime(ms) of Soot
#N #E #M Pointer Link Assembling Recognition Detection Total

DroidBench 186 15 1 0 46 3 14 11 40 114 24,702

Malware 893 1,327 6,070 5 4,818 108 55 747 2,358 8,086 65,241

Real Apps 5,392 3,900 75,117 10 17,114 611 453 3,742 13,301 35,221 135,763

attacks, with the average time of about 35s to complete
the analysis of a real application. In addition, since we
leverage Soot to generate the rough call graph and control
flow graphs for each method of applications, the run-
time of Soot should also be considered to complete the
whole detection. Soot performs a heavy work of reverse
engineering, i.e., converting Android .dex code into Java
bytecode, the time spent on that is hencemuch larger than
the runtime of DROIDECHO.

Discussion
Our attack detection is guided with the semantic attack
models, which describe the essential attack elements com-
bined in a logic order. In this way, our approach is general
such that we could detect several types of attacks as well as
their variations on Android. Although it is hard to include
exhaustive attack types, considering that zeroday attacks
occur from time to time, each augmentation of the attack
model can enhance and increase the ability of detecting
attacks significantly. On the other hand, we have improved
the conventional static analysis on Java with taking into
account the new features provided by the Android plat-
form. It helps to produce a more complete and compre-
hensive communication graph for Android applications,
and thereby makes the attack detectionmore accurate and
effective. However, considering the flaws of static analysis
and the experiment results we got, DROIDECHO still has
some shortcomings in detecting attacks:

Transformation attacks
It is a kind of attacks against anti-malware tools and
approaches, with transforming a malware into different
forms, but reserving the original logic (Rastogi et al.
2013). Our approach has a sufficient resistance against
trivial transformation attacks and transformation attacks
detectable by static analysis (DSA). However, transfor-
mation attacks non-detectable by static analysis (NSA),
e.g., reflection and bytecode encryption, can paralyze our
approach, which is also a common issue in static analysis.

Vulnerability exploits
We put more attentions on the attacks which invoke
Android APIs. There exist a kind of attacks which exploit
the vulnerabilities of Android, and trigger the vulnerabili-
ties by crafting a special input or executing some code in
a certain order. It is more difficult when the exploits are

written in native code. To date, our work only accepts Java
bytecode as the analysis object.
The limitations of our approach can be largely ascribed

to the expressive ability of the attack model. Since the
detection is based on static analysis, the attack model
proposed in this paper only contains static features of
attacks. As a result, we can detect more attacks by enrich-
ing and enhancing the attack model, for example, taking
into account dynamic features of attacks.

Related work
Attack representation
Chen et al. (Chen et al. 2013) present permission event
graphs (PEG) to depict API- and permission-related
behaviors occurring on Android. In addition, to express
the sequence of occurrence of events, they add the tem-
poral order and leverage the LTL to depict a policy
specification. Combining static analysis, model check-
ing and runtime monitoring, they are able to detect the
violation of contextual policies of Android applications.
Gunadi and Tiu (Gunadi and Tiu 2013) propose a secu-
rity policy specification language to describe privilege
escalation on Android. The language is based on met-
ric linear-time temporal logic (MTL) plus an extension of
recursive definitions. It can help to figure out the context-
sensitive privilege for one application. By monitoring the
chain of privilege in runtime, they manage to find out
the elevated privilege and detect collusion attacks. Aim-
ing at privacy issues on Android, Arzt et al. (Arzt et al.
2014b) reduce them into an IFDS (Reps et al. 1995) prob-
lem, and construct a flow- and context-sensitive graph
to present the entire behavioral system by static analy-
sis. Graph reachability and value evaluation are performed
to figure out whether the messages being sent out are
tainted as sensitive information. Yang et al. (Yang et al.
2014) propose a two-level behavioral graph (Component
Dependency Graph and Component Behavior Graph) to
express the program logic. At first, they leverage an unsu-
pervised mining approach to mine the program logic in
malware automatically. Based on the mined graphs, they
search crawled applications from marketplaces whether
they contain any of malicious behaviors or not. Mariconti
et al. (Mariconti et al. 2016) propose to use Markov Chain
to represent malicious behaviors in Android malware,
and employ static analysis to identify malicious behaviors.
AppContext (Yang et al. 2015) proposes two heuristics

Meng et al. Cybersecurity (2018) 1:4 Page 15 of 17

(i.e., activating and guarding conditions) to identify mal-
ware, while not classifying malware in terms of attack
targets.
A handful of works are devoted to identifying user-

intended behaviors. In a PEG, Chen et al. (Chen et al.
2013) define pre-conditions either with or without users’
consents. Although it only focuses on GUI operations, it
provides a new prospective of learning the essential char-
acteristics of malware. AppIntent, proposed by Yang et al.
(Yang et al. 2013), is another work to extract a sequence
of GUI operations which causes data transmission. They
first reduce the search space by static analysis to avoid
time-consuming, but useless, searching; then the event
sequence is generated after running symbolic execution
guided by the reduced space.
Our attack model combines the program-level behav-

iors and external inputs (i.e., triggers) to model attacks.
First, on the program level, we consider the combination
of assets, actions and flows to model a complete attack
behavior. In addition, our model is not on an abstract
level as most of the previous studies do. It thus can be
directly mapped to the real implementation of the tested
applications, withoutmissing critical details of the attacks.
Second, the triggers are taken into our consideration,
which can effectively differentiate the benign behaviors
from malicious ones.

Attack detection
Attack detection via program analysis can be roughly
divided into two categories: dynamic analysis and static
analysis. TaintDroid (Enck et al. 2010) tracks the propa-
gation of sensitive information on a customized Android,
and determines whether there exists any attack of privacy
leakage. DroidScope (Yan and Yin 2012) and VetDroid
(Zhang et al. 2013) both reconstruct malicious behaviors
by collecting information during the dynamic analysis.
However, the difficulty of the deployment of the mon-
itor system restricts the scale of attack detection; and
exhaustive test inputs are nearly impossible, which means
attacks may not be triggered and detected sometimes due
to insufficient inputs.
As a result, more researchers focus on detecting attacks

via static analysis. FlowDroid (Arzt et al. 2014b) per-
forms static analysis, specifically dataflow analysis, on the
code of applications to check if they contain behaviors of
privacy leakage. IccTa (Li et al. 2015) incorporates ICC
analysis to achieve a more complete and accurate detec-
tion of privacy leakage. However, these two approaches
are only focusing on the attack detection of privacy leak-
age. DroidSIFT (Zhang et al. 2014) analyzes the code of
applications and constructs behavior graphs to denote the
program logic. Taking the behavior graphs as signatures,
DroidSIFT builds a classification system to distinguish
benign applications frommalware. Apposcopy (Feng et al.

2014) takes into account the inter-component communi-
cation on Android, and constructs an inter-component
call graph to link up all components of the application to
detect malware of privacy leakage with crafted signatures.
Different from these two approaches, our approach pro-
poses to detect attacks based on semanticmodel of attacks
and use dynamic analysis to confirm their maliciousness.
Our approach combines two approaches, static and

dynamic analysis, and achieves both advantages of two
aspects. We first employ static analysis based on seman-
tic models of attacks to quickly find out the potential
malicious applications, with the trigger and the predicates
which cause the occurrence of attacks. Then we leverage
dynamic analysis to confirm the attacks to reduce false
positives. As a result, our approach is effective on large-
scale tests and reduces the false positive rate via dynamic
attack confirmation.

Conclusion
In this paper, we introduce a novel attack model to depict
the essential characteristics and features. In addition, we
build a transformation from an Android application to
a directed graph, called the inter-component communi-
cation graph. ICCG captures all structure information
of application, including call relationships and commu-
nication between different methods, and it contains all
control flow information for each method. Then we pro-
pose an effective algorithm to search attacks in ICCG.
The approach is proved to be feasible and effective in the
experiments. In future, we expect to extend our detect
algorithm to handle more complicated obfuscation or
encryption techniques, and will continue enriching the
attack model in order to handle more variants or new
attacks.
Acknowledgments
Kai Chen was supported in part by National Key R&D Program of China (No.
2016QY04W0805), NSFC U1536106, 61728209, National Top-notch Youth
Talents Program of China, Youth Innovation Promotion Association CAS,
Beijing Nova Program and a research grant from Ant Financial. This work is also
partly supported by International Cooperation Program on CyberSecurity,
administered by SKLOIS, Institute of Information Engineering, Chinese
Academy of Sciences, China (No. SNSBBH-2017111036).

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China. 2Nanyang Technological University, Singapore, Singapore.
3Singapore Institute of Technology, Singapore, Singapore. 4School of Cyber
Security, University of Chinese Academy of Sciences, Beijing, China.

Received: 4 January 2018 Accepted: 17 April 2018

Meng et al. Cybersecurity (2018) 1:4 Page 16 of 17

References
Arzt S, Bodden E (2016) StubDroid: Automatic Inference of Precise Data-flow

Summaries for the Android Framework. In: Proceedings of the 38th
International Conference on Software Engineering. pp 725–735

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D,
McDaniel P (2014) FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Edinburgh. pp 259–269

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D,
McDaniel P (2014) Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14. ACM, New York. pp 259–269

Au KWY, Zhou Y, Huang Z, Lie D (2012) PScout: Analyzing the Android
Permission Specification. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12. ACM, New York.
pp 217–228

Bosu A, Liu F, Yao DD, Wang G (2017) Collusive Data Leak and More:
Large-scale Threat Analysis of Inter-app Communications. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, Abu Dhabi. pp 71–85

Chen KZ, Johnson NM, D’Silva V, Dai S, MacNamara K, Magrino TR, Wu EX,
Rinard M, Song DX (2013) Contextual Policy Enforcement in Android
Applications with Permission Event Graphs. In: 20th Annual Network and
Distributed System Security Symposium, NDSS ’13, San Diego. http://
internetsociety.org/doc/contextual-policy-enforcement-android-
applications-permission-event-graphs

Chen QA, Qian Z, Mao ZM (2014) Peeking into Your App without Actually
Seeing It: UI State Inference and Novel Android Attacks. In: Proceedings of
the 23rd USENIX Conference on Security Symposium, SEC’14. USENIX
Association, Berkeley. pp 1037–1052

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, Sheth AN (2010)
TaintDroid: An Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10.
USENIX Association, Berkeley. pp 393–407

Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A Study of Android
Application Security. In: Proceedings of the 20th USENIX Conference on
Security, SEC’11. USENIX Association, Berkeley. pp 21–21

Enck W, Ongtang M, McDaniel PD (2009) Understanding Android Security. IEEE
Secur Priv 7(1):50–57

F-Secure Lab (2013) Mobile Threat Report, January - March 2013. Technical
report

Feng Y, Anand S, Dillig I, Aiken A (2014) Apposcopy: Semantics-Based
Detection of Android Malware Through Static Analysis. ACM, New Year.
https://doi.org/10.1145/2635868.2635869

Grace MC, Zhou Y, Wang Z, Jiang X (2012) Systematic Detection of Capability
Leaks in Stock Android Smartphones. In: 19th Annual Network &
Distributed System Security Symposium. http://dblp.uni-trier.de/rec/bib/
conf/ndss/GraceZWJ12

Gunadi H, Tiu A (2013) Efficient runtime monitoring with metric temporal
logic: A case study in the android operating system. CoRR abs/1311.2362.
http://arxiv.org/abs/1311.2362

Hao S, Li D, Halfond WGJ, Govindan R (2013) Estimating Mobile Application
Energy Consumption Using Program Analysis. In: Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13. IEEE Press,
Piscataway. pp 92–101

Hilgers C, Macht H, Müller T, Spreitzenbarth M (2014) Post-Mortem
Memory Analysis of Cold-Booted Android Devices. In: Proceedings of
the 2014 Eighth International Conference on IT Security Incident
Management & IT Forensics, IMF ’14. IEEE Computer Society, Washington.
pp 62–75

Lhoták O, Hendren L (2003) Scaling Java Points-to Analysis Using SPARK. In:
Proceedings of the 12th International Conference on Compiler
Construction, CC’03. Springer-Verlag, Berlin. pp 153–169

Li L, Bartel A, Bissyandé TF, Klein J, Traon YL, Arzt S, Rasthofer S, Bodden E,
Octeau D, McDaniel PD (2015) IccTA: Detecting Inter-Component Privacy
Leaks in Android Apps. In: 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1. pp 280–291

LuoW, Xu S, Jiang X (2013) Real-time Detection and Prevention of Android SMS
Permission Abuses. In: Proceedings of the First International Workshop on
Security in Embedded Systems and Smartphones, SESP ’13. ACM, New York

Mariconti E, Onwuzurike L, Andriotis P, Cristofaro ED, Ross GJ, Stringhini G
(2016) Mamadroid: Detecting android malware by building markov chains
of behavioral models. CoRR abs/1612:04433

Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Traon YL (2013) Effective
Inter-Component Communication Mapping in Android: An Essential Step
Towards Holistic Security Analysis. In: Proceedings of the 22Nd USENIX
Conference on Security, SEC’13. USENIX Association, Berkeley. pp 543–558

Oliner AJ, Iyer A, Lagerspetz E, Tarkoma S (2012) Collaborative Energy
Debugging for Mobile Devices. In: the 8th Workshop on Hot Topics in
System Dependability. USENIX, Berkeley

Orthacker C, Teufl P, Kraxberger S, Lackner G, Gissing M, Marsalek A,
Leibetseder J, Prevenhueber O (2011) Android Security Permissions - Can
We Trust Them? In: Security and Privacy in Mobile Information and
Communication Systems. Springer Berlin Heidelberg, Berlin. pp 40–51

Pathak A, Hu YC, Zhang M Bootstrapping Energy Debugging on Smartphones:
A First Look at Energy Bugs in Mobile Devices. In: Proceedings of the 10th
ACMWorkshop on Hot Topics in Networks, HotNets-X. ACM, New York.
pp 5:1–5:6. https://doi.org/10.1145/2070562.2070567

Pathak A, Hu YC, Zhang M (2012) Where is the energy spent inside my app?
Fine-grained Energy Accounting on Smartphones with Eprof. In:
Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12. ACM, New York. pp 29–42. https://doi.org/10.1145/2168836.
2168841

Prince B New Android Malware Targets Banking Apps, Phone Information:
Fireeye. http://www.securityweek.com/new-android-malware-targets-
banking-apps-phone-information-fireeye. Accessed 05 Oct 2017

ProGuard (2017). http://developer.android.com/tools/help/proguard.html.
Accessed 03 Dec 2017

Qu Z, Rastogi V, Zhang X, Chen Y, Zhu T, Chen Z (2014) AutoCog: Measuring
the Description-to-permission Fidelity in Android Applications. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. pp 1354–1365

Rastogi V, Chen Y, Jiang X (2013) DroidChameleon: Evaluating Android
Anti-malware Against Transformation Attacks. In: Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communications
Security, ASIA CCS ’13. ACM, New York. pp 329–334

Reps TW, Horwitz S, Sagiv S (1995) Precise Interprocedural Dataflow Analysis
via Graph Reachability. In: Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco. https://doi.org/10.1145/199448.199462

Schlegel R, Zhang K, Zhou X, Intwala M, Kapadia A, Wang X (2011)
Soundcomber: A Stealthy and Context-Aware Sound Trojan for
Smartphones. In: 18th Annual Network and Distributed System Security
Symposium

Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S, Glezer C (2010) Google
Android: A Comprehensive Security Assessment. IEEE Secur Priv 8(2):35–44

Symantec Inc. (2017) Internet Security Threat Report. Technical report
Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V (1999) Soot - a

Java Bytecode Optimization Framework. In: Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON ’99. IBM Press. p 13. http://dl.acm.org/citation.cfm?id=781995.
782008

Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards Verifying Android Apps for
the Absence of No-Sleep Energy Bugs. In: Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems, HotPower’12.
USENIX Association, Berkeley. pp 3–3

Wei F, Roy S, Ou X, Robby (2014) Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp 1329–1341

Wong MY, Lie D (2016) IntelliDroid: A Targeted Input Generator for the
Dynamic Analysis of Android Malware. In: 23rd Annual Network &
Distributed System Security Symposium

Xing L, Pan X, Wang R, Yuan K, Wang X (2014) Upgrading Your Android,
Elevating My Malware: Privilege Escalation Through Mobile OS Updating.
In: IEEE Security & Privacy

Xu K, Li Y, Deng RH (2016) ICCDetector: ICC-Based Malware Detection on
Android. IEEE Trans Inf Forensics Secur 11(6):1252–1264

http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
https://doi.org/10.1145/2635868.2635869
http://dblp.uni-trier.de/rec/bib/conf/ndss/GraceZWJ12
http://dblp.uni-trier.de/rec/bib/conf/ndss/GraceZWJ12
http://arxiv.org/abs/1311.2362
https://doi.org/10.1145/2070562.2070567
https://doi.org/10.1145/2168836.2168841
https://doi.org/10.1145/2168836.2168841
http://www.securityweek.com/new-android-malware-targets-banking-apps-phone-information-fireeye
http://www.securityweek.com/new-android-malware-targets-banking-apps-phone-information-fireeye
http://developer.android.com/tools/help/proguard.html
https://doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008

Meng et al. Cybersecurity (2018) 1:4 Page 17 of 17

Xuxian J, Yajin Z (2013) Android Malware. SpringerBriefs in Computer Science
Yan LK, Yin H (2012) DroidScope: Seamlessly Reconstructing the OS and Dalvik

Semantic Views for Dynamic Android Malware Analysis. In: USENIX
Security. USENIX Association, Berkeley. pp 29–29

Yang C, Xu Z, Gu G, Yegneswaran V, Porras PA (2014) DroidMiner: Automated
Mining and Characterization of Fine-grained Malicious Behaviors in
Android Applications. In: 19th European Symposium on Research in
Computer Security. Springer International Publishing. pp 163–182

Yang W, Xiao X, Andow B, Li S, Xie T, Enck W (2015) AppContext: Differentiating
Malicious and Benign Mobile App Behaviors Using Context. Proceedings of
the 37th International Conference on Software Engineering. pp. 303–313

Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS (2013) AppIntent: Analyzing
Sensitive Data Transmission in Android for Privacy Leakage Detection. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications Security, CCS ’13. ACM, New York. pp 1043–1054

Zhang M, Duan Y, Yin H, Zhao Z (2014) Semantics-Aware Android Malware
Classification Using Weighted Contextual API Dependency Graphs. In:
Proceedings of the 21th ACM Conference on Computer and
Communications Security, CCS ’14, Scottsdale

Zhang M, Yin H (2014) Efficient, Context-aware Privacy Leakage Confinement
for Android Applications Without Firmware Modding. In: Proceedings of
the 9th ACM Symposium on Information, Computer and Communications
Security (ASIACCS’14), Kyoto

Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, Wang XS, Zang B (2013) Vetting
Undesirable Behaviors in Android Apps with Permission Use Analysis. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’13. ACM, New York. pp 611–622. https://
doi.org/10.1145/2508859.2516689

Zhou Y, Jiang X (2011) An Analysis of the AnserverBot Trojan. Technical report.
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

Zhou Y, Jiang X (2012) Dissecting Android Malware: Characterization and
Evolution. In: Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12. IEEE Computer Society, Washington. pp 95–109

https://doi.org/10.1145/2508859.2516689
https://doi.org/10.1145/2508859.2516689
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

	Abstract
	Keywords

	Introduction
	Organization

	Semantic model of attack
	Building blocks
	Assets
	Actions
	Category
	Parametrization

	Triggers
	Flows

	Attack models
	Attack taxonomy
	Privacy leakage
	Information interception
	Content tampering
	Service abuse
	Resource depletion

	Discussion
	Disclaimers

	The inter-component communication graph
	Android communication medium
	Intent
	Message
	Binder
	Persistent storage

	Inter-component communication graph
	Sufficiency of ICCG

	System design of DroidEcho
	Disclaimer learning
	ICCG construction
	Pointer analysis
	Link analysis
	Graph assembling

	Attack detection
	Action recognition
	Reachability analysis & slicing
	Taint analysis

	Dynamic attack confirmation

	Evaluation
	Evaluation on Malware Benchmark
	Evaluation on real Apps
	False positive analysis

	Evaluation on performance

	Discussion
	Transformation attacks
	Vulnerability exploits

	Related work
	Attack representation
	Attack detection

	Conclusion
	Acknowledgments
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

