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ABSTRACT

A GUI skeleton is the starting point for implementing a UI design
image. To obtain a GUI skeleton from a Ul design image, developers
have to visually understand UI elements and their spatial layout
in the image, and then translate this understanding into proper
GUI components and their compositions. Automating this visual
understanding and translation would be beneficial for bootstraping
mobile GUI implementation, but it is a challenging task due to the
diversity of UI designs and the complexity of GUI skeletons to gener-
ate. Existing tools are rigid as they depend on heuristically-designed
visual understanding and GUI generation rules. In this paper, we
present a neural machine translator that combines recent advances
in computer vision and machine translation for translating a Ul
design image into a GUI skeleton. Our translator learns to extract
visual features in Ul images, encode these features’ spatial layouts,
and generate GUI skeletons in a unified neural network frame-
work, without requiring manual rule development. For training our
translator, we develop an automated GUI exploration method to
automatically collect large-scale Ul data from real-world applica-
tions. We carry out extensive experiments to evaluate the accuracy,
generality and usefulness of our approach.
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1 INTRODUCTION

Mobile applications (apps) are event-centric programs with rich
Graphical User Interfaces (GUIs). An app’s GUI should not only
provide a working interface for user interactions, but also create an
intuitive and pleasant user experience. In fact, the later is crucial for
an app’s success in the highly competitive market [46, 56]. Devel-
oping the GUI of an app routinely involves two separate but related
activities: design a Ul and implement a UL Designing a Ul requires
proper user interaction, information architecture and visual effects
of the UI, while implementing a UI focuses on making the UI work
with proper layouts and widgets of a GUI framework. A UI design
can be created from scratch or adapted from UI design kits [1] or
existing apps’ GUISs, and it is usually conveyed to developers in the
form of design images to implement.

A UI design image depicts the desired Ul elements and their
spatial layout in a matrix of pixels. To implement a UI design image
using a GUI framework, developers must be able to translate the
pixel-based depiction of the UI (or parts of the UI) into a GUI skele-
ton. As illustrated in Figure 1, a GUI skeleton defines what and how
the components of a GUI builder (e.g., Android layouts and widgets)
should be composed in the GUI implementation for reproducing
the Ul elements and their spatial layout in the UI design image.
This GUI skeleton is like the initial “bootstrap instructions” which
enables the subsequent GUI implementation (e.g., setting up font,
color, padding, background image, and etc.)

However, there is a conceptual gap between a UI design image
(i.e., a Ul design in a pixel language) and the GUI skeleton (i.e., the
Ul design in a language of GUI framework component names). To
bridge this gap, developers need to have a good knowledge of a
GUI framework’s components and what visual effects, interactions
and compositions these components support in order to create
an appropriate GUI skeleton for different kinds of UI elements
and spatial layouts. If developers do not have this knowledge, the
GUI implementation will become stucked, because modern GUI
implementation cannot be achieved by hardcode-positioning some
texts, images and controls. This is especially the case for mobile
apps that have to run on a wide range of screen sizes.

To overcome the knowledge barrier between Ul design image
and GUI skeleton, developers may attempt to figure out what and
how the GUI components should be composed for a Ul design image
through a trial-and-error approach. Although modern GUI builders
provide strong interactive support (e.g., drag & drop, what-you-see-
is-what-you-get) for creating a GUI implementation, this type of
trail-and-error attempt would be very cumbersome and frustrating.
First, a mobile app’s GUI often involves many GUI components
and complex spatial layout (see Figure 6(b)). Second, a complex
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Figure 1: Translating a design image into a Android GUI skeleton (not all)
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GUI framework supports dozens of layouts and widgets (some may
be interchangeable) and flexible composition of these layouts and
widgets. Developers can easily get lost during the trial-and-error
of an unfamiliar GUI framework.

Alternatively, developers can learn from GUI framework tuto-
rials or existing GUI implementations. To that end, they must be
able to find some tutorials or GUI implementations that implement
the UI designs that are similar to the desired Ul Finding such tu-
torials or GUI implementations through the Ul design image is a
challenging image search task. It is also difficult to formulate a
concise, accurate text query of the UI design and the needed GUI
components for using information retrieval (IR) methods. Devel-
opers can also seek solutions for implementing a Ul design from
the developer community (e.g., Stack Overflow), but they may not
always be able to obtain useful advices in time.

The UIs of apps can be very sophisticated to support complex
tasks, and they may undergo many revisions during the apps’ lifes-
pan. Considering millions of apps being developed and maintained,
automating the translation from UI design to GUI implementation
would be beneficial for mobile app development. Some tools [30, 45]
can automatically generate the GUI implementation given a UI de-
sign image. This automatic, generative approach overcomes the
limitations of the trial-and-error, search-based or ask-developer-
community approaches for transforming UI design image into GUI
skeleton. However, existing tools are rigid because they depend
on hand-designed visual understanding and GUI generation tem-
plates which incorporate only limited Ul-image-to-GUI-skeleton
translation knowledge.

In this work, we present a deep learning architecture that distills
the crowd-scale knowledge of UI designs and GUI implementations
from existing apps and develop a generative tool to automatically
generate the GUI skeleton given an input UI design image. Our
generative tool can be thought of as an “expert” who knows a vast
variety of Ul designs and GUI skeletons to advise developers what
and how the components of a GUI framework should be composed
for implementing a Ul design image.

To build this “expert”, we must tackle two fundamental chal-
lenges. First, to be a knowledgeable expert, the generative tool
must be exposed to a knowledge source of a vast variety of Ul
designs and GUI skeletons from a large number of apps. Second, to
advise developers how to translate a UI design into a GUI skeleton,
the generative tool must capture not only the UI elements con-
tained in a Ul design image, but it also must express how these
Ul elements relate to each other in terms of a composition of the
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GUI components. In this paper, we present an automated GUI ex-
ploration technique for tackling the first challenge in knowledge
source, and develop a neural machine translator that combines
recent advances in computer vision and machine translation for
tackling the second challenge in visual understanding and skeleton
generation. The neural machine translator is end-to-end trainable
using a large dataset of diverse UI screenshots and runtime GUI
skeletons that are automatically collected during the automated
GUI exploration of mobile app binaries.

We implement an Android UI data collector [52, 53] and use it to
automatically collect 185,277 pairs of Ul images and GUI skeletons
from 5043 Android apps. We adopt this dataset to train our neural
machine translator and conduct unprecedented large-scale evalua-
tion of the accuracy of our translator for Ul-image-to-GUI-skeleton
generation. Our evaluation shows that our translator can reliably
distinguish different types of visual elements and spatial layouts
in very diverse Ul images and accurately generate the right GUI
components and compositions for a wide range of GUI skeleton
complexity. We also apply our translator to the Uls of 20 Android
apps that are not in our training set, and this study further confirms
the generality of our translator. Through a pilot user study, we
provide the initial evidence of the usefulness of our approach for
bootstraping GUI implementations.

Our contributions in this work are as follows:

e We develop a deep-learning based generative tool for over-
coming the knowledge barrier for translating UI images to
GUI skeletons.

e Our generative tool combines CNN and RNN models for
learning a crowd-scale knowledge of UI images and GUI
skeletons from a large number of mobile apps.

e We develop an automated GUI exploration framework to
automatically build a large dataset of Ul images and GUI
skeletons for training the deep learning models.

e We show our tool’s robust visual understanding and GUI
skeleton generation capability through large-scale experi-
ments, and provide initial evidence of our tool’s usefulness
by a pilot user study.

2 PROBLEM FORMULATION

We formulate the Ul-image-to-GUI-skeleton generation as a ma-
chine translation task. The input i to the machine translator is a Ul
design image (can be regarded as a Ul design in a pixel language,
e.g., RGB color or grayscale pixels). As shown in Figure 2, the ma-
chine translator should be able to “translate” the input UI design
image into a GUI skeleton, i.e., a composition of some container
components (i.e., the non-leaf nodes) and atomic components (i.e.,
the leaf nodes) of a GUI framework.

A GUI skeleton can be regarded as the UI design in a GUI frame-
work language whose vocabulary consists of the component names
of the GUI framework, such as Android’s RelativeLayout, TextView,
ImageButton, and two special tokens (e.g., brackets “{” and “}”) ex-
pressing the composition of GUI components. As shown in Figure 2,
a component hierarchy can be represented as an equivalent token
sequence via depth-first traversal (DFT) and using “{” and “}” to
enclose a container’s contained components in the token sequence.
In this work, we use the token sequence representation of the GUI
skeleton as the output of the machine translator.
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Figure 2: An example of Ul-image-to-GUI-skeleton generation

3 NEURAL MACHINE TRANSLATOR

Unlike normal machine translation tasks where both source and
target languages are text data, our machine translation task requires
joint processing of image and text data. Furthermore, unlike text
which is a sequence of words, our input UI design image contains
the spatial layout information of Ul elements, and our output GUI
skeleton is a hierarchical composition of GUI components. Taking
into account these characteristics of our task, we design a neural
machine translator which integrates a vision Convolutional Neu-
ral Network (CNN) [35, 57], a Recurrent Neural Network (RNN)
encoder and a RNN decoder [15, 60] in a unified framework. As
shown in Figure 3, given an input Ul image, the vision CNN extracts
a diverse set of image features through a sequence of convolution
and pooling operations. The RNN encoder then encodes the spatial
layout information of these image features to a summary vector
C, which is then used by the RNN decoder to generate the GUI
skeleton in token sequence representation.

3.1 Feature Extraction by Vision CNN

To learn about visual features and patterns of numerous UI ele-
ments from a vast amount of Ul images, we need a sophisticated
model with capability of visual understanding. Convolutional Neu-
ral Networks (CNNs) constitute one such class of models. CNN is
inspired by the biological findings that the mammal’s visual cortex
has small regions of cells that are sensitive to specific features of
visual receptive field [31, 32]. These cells act as local filters over
the input space and they visually perceive the world around them
using a layered architecture of neurons in the brain [23]. CNN is
designed to mimic this phenomenon to exploit the strong spatially
local correlation present in images.

A CNN is a sequence of layers that transform the original im-
age spatially into a compact feature representation (called feature
map) 35, 37]. In our CNN architecture, we use two main types of
layers: convolutional layer (Conv) and pooling layer (Pool), following
the pattern Conv — Pool. We stack a few Conv — Pool layers to
create a deep CNN, because a deep CNN can extract more power-
ful features of the input images [35, 57, 61]. We do not use fully
connected layers, since we want to preserve the locality of CNN
features in order to encode their spatial layout information later.
3.1.1 Convolutional Layer

A convolutional layer accepts an input volume I € RWHiD1
where Wy, Hy and Dy are the width, height and depth of the input
volume respectively. If the first convolutional layer takes as input
an image, then Wy and Hj is the width and height of the image,
and Dy is 1 for gray-scale image, or 3 for RGB color image (i.e., red,
green, blue channels respectively). Each cell of the input volume
is a pixel value from 0 to 255. The cell values of the input volume
for the subsequent convolutional layers depend on the convolution
and pooling operations of the previous layers.
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A convolutional layer performs convolution operations using
filters (or kernels). A filter is a neuron that learns to look for some
visual features (e.g., various oriented edges) in the input. The filters
in a layer will only be connected to the local regions of the input
volume. The spatial extent of this local connectivity is called the
receptive field of the neuron (i.e., filter size). The extent of the
connectivity along the depth is equal to the depth Dy of the input
volume. The convolution operation performs dot products of a filter
and the local regions of the input followed by a bias b € R offset. We
apply the non-linear activation function ReLU(x) = max(0, x) [44]
to the output of a convolution operation. We perform zero-padding
around the border of the input volume so that the information at
the border will also be preserved in convolution [49].

Below is an example of applying a 3 x 3 filter to a 3 X 3 region of
a gray-scale image (i.e., Dj = 1) followed by ReLU activation:

P p2 p3| |w1 w2 w3 9
Conv(|ps ps  pel,|wa ws wel|) = max(0, anwn +b)
P71 ps po| |w7 ws W9 n=1

where py, is the pixel value and wy, is the weight of the filer. The
resulting convolution value represents the activation of a neuron
over a region of the input image. Intuitively, this value represents
the likelihood of a neuron “seeing” a particular visual feature over
the region. During the model training, the CNN will learn filters that
activate when they “see” various visual features, such as an edge of
some orientation on the first convolutional layer, and shape-like
patterns (e.g., rectangle, circle) and more abstract visual patterns
(e.g., image region, text) on higher layers of the network [61].

A convolutional layer can have K filters. The K filters that are
applied to the same region of the input produce K convolution
values. These K values form a feature vector, representing the obser-
vations of all K neurons over this particular region of the image. A
filter is applied to each possible local regions of the input, specified
by the stride S (the number of pixels by which we slide the filter
horizontally and vertically). This produces a kernel map containing
the values of performing a convolution of the d-th filter over the
input volume with a stride of S. Intuitively, a kernel map represents
the observations of a neuron over the entire image. All K kernel
maps form a feature map of a convolutional layer.

3.1.2 Pooling Layer

Pooling layers take as input the output feature map of the pre-
ceding Conv layers and produce a spatially reduced feature map.
They reduce the spatial size of the feature map by summarizing the
values of neighboring groups of neurons in the same input kernel
map. A pooling layer consists of a grid of pooling units spaced S
pixels apart, each summarizing a region of size Z X Z of the input
volume. Different from the filters in the Conv layers, pooling units
have no weights, but implement a fixed function. In our architec-
ture, we adopt I-max pooling [43] which takes the maximum value
in the Z X Z region. As the pooling layer operates independently on
every input kernel map, the depth dimension of the output feature
map remains the same as that of the input feature map.

Pooling layers progressively reduce the spatial size of the feature
map to reduce the amount of parameters and computation in the
network, and hence to also control overfitting. Meanwhile, pooling
also keeps the most salient information as it preserves the maxi-
mum value of each region in the depth slice. It also benefits to the
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Figure 3: Architecture of Our Neural Machine Translator for UI-Image-to-GUI-Skeleton Generation

invariance to shifting, rotation and scaling. Even if the image is
shifted/rotated/scaled by a few pixels, the output by max operation
will still stay the same when pooling over a region.

3.2 Spatial Layout Encoding by RNN Encoder

Our neural machine translator takes as input only a raw Ul image,
requiring no detailed annotations of the structure and positions
of visual elements. Therefore, given the feature map outputted by
the vision CNN, it is important to localize the relative positions of
visual features within the input image for the effective generation
of proper GUI components and their compositions. To encodes
spatial layout information of CNN features, we run a Recurrent
Neural Network (RNN) encoder over each of the feature vectors of
the feature map outputted by the vision CNN.

The input to a RNN is a sequence of vectors (e.g., words in a
sentence in the application of RNNs to Natural Language Processing
tasks). To apply the RNN model in our task, we convert the feature
map FM € RWHD outputted by the vision CNN into a sequence of
D-dimensional feature vectors (D is the depth of the feature vector).
The length of this image-based sequence is W X H (i.e., the width
and height of the feature map). The conversion can be done by
scanning the feature map along the width axis first and then the
height axis, or vice versa. In order to capture the row (or column)
information in the sequence, we insert a special vector at the end
of each row (or column) (can be thought of as a “” in text), which
are referred to as positional embeddings.

An RNN recursively maps an input vector x; and a hidden state
h;—1 to a new hidden state h;: hy = f(h;—1,x;) where f is a non-
liner activation function (e.g., a LSTM unit discussed below). After
reading the end of the input, the hidden state of the RNN encoder is
a vector C summarizing the spatial layout information of the whole
input feature map. Modeling long-range dependencies between
CNN features is crucial for our task. For example, we need to capture
the dependency between the bottom-right and top-left features of
a visual element in an image-base sequence. Therefore, we adopt
Long Short-Term Memory (LSTM) [29]. An LSTM consists of a
memory cell and three gates, namely the input, output and forget
gates. Conceptually, the memory cell stores the past contexts, and
the input and output gates allow the cell to store contexts for a long
period of time. Meanwhile, some contexts can be cleared by the
forget gate. This special design allows the LSTM to capture long-
range dependencies, which often occur in image-based sequences.

3.3 GUI Skeleton Generation by RNN Decoder

Based on the RNN-encoder’s output summary vector C, the target
tokens of the GUI framework language (i.e., the names of GUI
components and the special tokens { and }) are then generated by
a decoder. The token sequence representation of a GUI skeleton

ScrollView

to ty t2 t3

Figure 4: An illustration of beam search (beam width=2)

can be converted to a component hierarchy via depth-first traversal
(DFT) as seen in Figure 2. As the length of the generated token
sequence varies for different UI images, we adopt a RNN decoder
which is capable of producing a variable-length sequence. The
hidden state of the decoder at time ¢ is computed as f(hs—1, yz-1,C)
(f is also LSTM). The conditional distribution of the next token y; is
computed as P(y;|(y¢-1, ..., Y1), C) = softmax(hs,ys—1,C), where
softmax function produces valid probabilities over the language
vocabulary. Note that the hidden state and the next token are not
only conditioned on past contexts, but also the summary vector C
of the CNN features of the input image.

3.4 Model Training

Although our neural machine translator is composed of three neural
networks (a vision CNN, a spatial layout RNN encoder, and a GUI
skeleton generation RNN decoder), these networks can be jointly
trained end-to-end with one loss function. The training data consists
of pairs of UI images i and corresponding GUI skeletons s (see
Section 4 for how we construct a large-scale training dataset). The
GUI skeleton is represented as a sequence of tokens s = {so, s1, ...}
where each token comes from a GUI framework language (i.e., the
names of GUI components and the two special tokens { and }). Each
token is represented as a one-hot vector.

Given a Ul image i as input, the model tries to maximize the
conditional probability p(s|i) of producing a target sequence of the
GUI skeleton s = {so, s1, ...}. Since the length of s is unbounded, it
is common to apply the chain rule to model the joint log probability
over s, ..., SN, where N is the length of a particular sequence as:

N
log p(si) = ), log p(stli, (50, .-+ 5t-1)) (1)

t=0

At training time, we optimize the sum of log probabilities over
the whole training set using stochastic gradient descent [11]. RNN
encoder and decoder backpropagates error differentials to its in-
put, i.e., the CNN, allowing us to jointly learn the neural network
parameters to minimize the error rate in a unified framework.
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3.5 GUI Skeleton Inference

After training the neural machine translator, we can use it to gener-
ate the GUI skeleton s for a Ul design image i. The generated GUI
skeleton should have the maximum log probability p(s|i). Gener-
ating a global optimal GUI skeleton has an immerse search space.
Therefore, we adopt the beam search [34] to expand only a limited
set of the most promising nodes in the search space. As illustrated
in Figure 4, at each step ¢, the beam search maintains a set of the k
(beam-width) best sequences as candidates to generates sequences
of size t + 1. At the step t + 1, the neural machine translator pro-
duces a probability distribution over the language vocabulary for
expanding each of the current candidate sequences to new candi-
date sequences of size t + 1. The beam search keeps only the best k
sequences among all new candidate sequences of size ¢ + 1. This
process continues until the model generates the end-of-sequence
symbol for the k best sequences. Then, the top-1 ranked sequence
is returned as the generated GUI skeleton for the input UI image.

4 COLLECTING LARGE-SCALE MODEL
TRAINING DATASET

To train our neural machine translator, we need a large set of pairs
of UI images and GUI skeletons from existing mobile apps. This
requires us to explore the apps’ GUIs, take Ul screenshots, obtain
runtime GUI component hierarchies, and associate screenshots with
component hierarchies. Although some tools (e.g., Apktool [7], UL
Automator [24]) may assist these tasks, none of them can automate
the whole data collection. Inspired by automated GUI testing tech-
niques [16], we develop an automated technique, termed Stoat [53],
to explore the GUIs. During exploration, the UI screenshots paired
with their corresponding runtime GUI component hierarchies will
be automatically dumped. The dumped UI images and correspond-
ing GUI component hierarchies are like the example in Figure 2.

4.1 Exploring Application GUIs

Mobile apps are event-centric with rich GUIs, and users interact
with them by various actions (e.g., click, edit, scroll). Stoat
emits various Ul events to simulate user actions, and automatically
explore different functionalities of an app. To thoroughly explore an
app’s GUIs, our data collector tries to identify executable GUI compo-
nents (e.g., clickable, long-clickable editable, scrollable) on the current
Ul and infer actions from these components’ type. For example, if
the UI contains a Button, Stoat can simulate a click action on it.
However, mobile platforms like Android also permit developers to
implement actions in the app code. For example, a TextView widget
may be registered with a LongClick action, which is invisible in
the UL Without incorporating these implicit actions, we may fail
to execute some app functionalities (i.e., miss some Ul images). To
overcome this issue, we integrate static analysis method (e.g., [9])
to scan app code and detect actions that are either registered with
UI widgets (e.g., setOnLongClickListener) or implemented by
overriding class methods (e.g., onCreateOptionsMenu).

Figure 5 shows an example of using Stoat to explore an Android
app (Budget [12]) and collect the required data. Starting from the
Main Page which lists the balance of each expense group (e.g., Baby,
Bill, Car), Stoat can “click” T which opens the Distributed Page.
On the Distributed Page, Stoat can “edit” the amount of money
distributed to an expense group (e.g., Baby). It can also “scroll” the
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Figure 5: Automatically exploring an app’s GUIs
Distributed Page to show more expense groups or “click” the back
button (the hardware back button on the phone) to go back to the
Main Page. On the Main Page, Stoat can also “click” an expense
group which opens the Balance Page or “click” the setting button
which opens the Setting Page. On the Balance Page, it can “longclick”
a transaction (e.g., Fruit) to select it.

4.2 Prioritizing Ul exploration

Figure 5 shows there are often several executable components/actions
on a UL To determine which component/action to execute, Stoat
implements a prioritized UI exploration method. We conduct a for-
mative study of the GUIs of 50 Google Play apps from 10 categories
(e.g., Communications, Personal, Tools), and summarize three key
observations that can affect the UI exploration performance: (a)
Frequency of action. Each action should be given chance to execute.
When an action is more frequently executed than others, its prior-
ity should be lowered. (b) Number of subsequent Uls. If an action
exhibits more subsequent Uls after its execution, its should be pri-
oritized in future so that more new functionalities can be visited. (c)
Type of action. Different types of actions should be given different
priorities. For example, a hardware back or a scroll action should be
executed at right time. Or, it may discard the current UI page and
prevent the execution of other normal actions (e.g., edit).

Based on these observations, we assign each action on an exe-
cutable component on a UI with an execution weight, and dynami-
cally adjust this value at runtime. The action with the highest weight
value will be queued as next action to execute. The weight of an
action is determined by the formula below: execution_weight(a) =
(a * Tq + f = Cq)/y = F; where a is the action, T, is the weight
of different types of actions (1 for normal UI actions (e.g., click,
edit), 0.5 for hardware back and scroll, and 2 for menu selec-
tion), C, the number of unexplored components on the current Ul,
F, is the times that a has been executed, and «,  and y are the
weight parameters which can be determined empirically.

4.3 Excluding Duplicate Uls

After simulating an action, our data collector takes the screenshot
of the current Ul and dump its runtime GUI component hierarchy.
As seen in Figure 5, the same Ul may be visited many times, for
example, to execute different features on the Main Page, or to view
the same expense group on the Balance Page again. Furthermore,
after an action, the app may stay on the same UL, for example, after
editing Baby amount on the Distribution Page. To collect as diverse
Ul images and GUI component hierarchies as possible, we should
avoid collecting such duplicate Uls.
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To that end, we compare the newly collected pair of Ul image
and GUI component hierarchy (inew, Snew) With already collected
pairs (ig, Sq). As comparing images is time-consuming, we compare
component hierarchies. We convert GUI component hierarchies
into their token sequence representation by a depth-first traversal,
and then compute the hash values for the resulting token sequences.
Only if the hash value of sj¢ does not match that of any s4, the
newly collected pair (inew, Snew) Will be kept. Otherwise, it will
be discard. For example, when going back from the Balance Page to
the Main Page, the Main Page Ul data will not be collected again.
As another example, after editing Baby amount to a different value,
the Balance Page Ul image will be slightly different, but the GUI
component hierarchy remains the same. Therefore, the Balance
Page Ul data will not be collected after editing Baby amount.

Some UI actions may change the UI's runtime component hier-
archies even the app stays on the same UI after the actions, like
deleting an expense group or scrolling the Distribution Page so that
different numbers of expense groups are visible. If the resulting
GUI component hierarchy has not been collected before, the newly
collected pair (inew, Snew) Will be kept. In such cases, the Ul images
before and after the actions may be similar, but will not be identical.

5 CONSTRUCTING ANDROID UI DATASET

We implemented our automated Android UI data collector, Stoat,
as described in Section 4. Stoat uses Android emulators (configured
with the popular KitKat version, SDK 4.4.2, 7681280 screen size) to
run Android apps. It uses Android UI Automator [24, 28] to dump
pairs of UI images and corresponding runtime GUI component
hierarchies. Soot [20] and Dexpler [9] are used for static analysis.
Stoat runs on a 64-bit Ubuntu 16.04 server with 32 Intel Xeon CPUs
and 189G memory, and controls 16 emulators in parallel to collect
data (each app is run for 45 minutes).

5.1 Dataset of Android Application Uls

We crawl 6000 Android apps [41] with the highest installation
numbers from Google Play. 5043 apps runs successfully by Stoat and
they belong to 25 categories. Figure 6(a) shows the number of apps
in each category. The other 957 apps require extra hardware support
or third-party libraries which are not available in the emulator.
Stoat collected totally 185,277 pairs of Ul images and GUI skele-
tons (on average about 36.7 pairs per app)'. This UI dataset is used
for training and testing our neural machine translator (see Sec-
tion 6). The collected GUI skeletons use 291 unique Android GUI
components, including Android’s native layouts and widgets and
those from third-party libraries. The box plots in Figure 6(b) shows
the complexity of the collected GUI skeletons which varies greatly.

Dataset can be downloaded in http://tagreorder.appspot.com/ui2code.html.
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On average, a GUI skeleton has 24.73 GUI components, 7.43 con-
tainers (non-leaf components) and 5.43 layers (the longest path
from the root to a leaf component).

5.2 Effectiveness of Automated UI Exploration

To train a “knowledgeable” neural machine translator, we need
a diverse set of Uls. Note that we already exclude duplicate Uls
during data collection (see Section 4.3). Therefore, the diversity
of the collected UI data depends on Stoat’s ability to thoroughly
explore an app’s GUIs. To confirm the Ul-exploration effectiveness
of Stoat, we compared it with Monkey [25], an automated GUI
testing tool developed by Google and released with Android SDKs.
We use Activity Coverage (AC), rather than code coverage crite-
ria [54, 62], to evaluate the Ul-exploration effectiveness. As android
apps are composed of activities, which are responsible for rendering
Ul pages, AC can measure the percentage of how many different
activities (UI pages) have been explored. We randomly selected
400 apps from our crawled apps, and apply both tools on them. To
achieve a fair comparison, we allocate the same exploration time
(45 minutes) for the two tools. Figure 7(a) shows the AC values
achieved by the two tools in box plots, and Figure 7(b) presents the
average AC values over different app categories. On average, Stoat
achieves 0.513 AC, 12.7% higher than Monkey (0.455). Among all
23 categories of these 400 apps, Stoat also outperforms Monkey.

6 EVALUATION

We evaluate our neural machine translator in three aspects, i.e.,
accuracy, generality and usefulness as follows.

6.1 Implementing Neural Machine Translator

We implement the proposed neural machine translator with six
Conv — Pool layers in the CNN model. The first Conv layer uses
64 filters, and each subsequent layer doubles the number of filers.
This is because higher Conv layers have to capture more abstract
and diverse visual features [36, 61], and thus need more neurons.
Following the CNN layer sizing patterns [49] for vision tasks, we
set the filter size 3, the stride 1 and the amount of zero padding 2 for
convolutional layers. This setting allows us to leave all spatial down-
sampling to the Pool layers, with the Conv layers only transforming
the input volume depth-wise (determined by the number of filters
of a Conv layer). For the pooling layers, we use the most common
form of pooling layer setting [49], i.e., pooling units of size 2 X 2
applied with a stride 2. This setting downsamples every kernel map
by 2 along both width and height, discarding 75% of the neurons.
For the RNN encoder and decoder, there are 256 hidden LTSM units
to store the hidden states.

We implement our model based on the Torch [17] framework
written in Lua. We train the model using randomly selected 90%
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of the Android UI dataset (i.e., 165,887 pairs of Ul images and GUI
skeletons), and fine-tune model hyperparameters (the number of
CNN layers, the number of Conv layer filers and the number of RNN
hidden states) using another randomly selected 3% of Android UI
dataset. The model is trained in a Nvidia M40 GPU (24G memory)
with 10 epochs for about 4.7 days. At inference time, our translator
can generate GUI skeletons for 20 UI images per second, which is
about 180 times faster than existing Ul reverse engineering tech-
niques [45] based on traditional computer vision techniques (e.g.,
edge detection [13], Optical-Character-Recognition (OCR) [51]).

6.2 Evaluation Metric

Let (iz, s¢) be a pair of Ul image and GUI skeleton in the testing
dataset. We say s; is the ground-truth GUI skeleton for the Ul image
it. Let s4 be the generated GUI skeleton for the i; using our neural
machine translator. Both s; and s4 are in their token sequence
representation (see Section 2) in our evaluation.

The first metric we use is exact match rate, i.e., the percentage
of testing pairs whose s; exactly match sg. Exact match is a binary
metric, i.e., 0 if any difference, otherwise 1.t cannot tell the extent to
which a generated GUI skeleton differs from the ground-truth GUI
skeleton. For example, no matter one or 100 differences between
the two GUI skeletons, exact match will regard them as 0.

Therefore, we adopt BLEU (BiLingual Evaluation Understudy) [47]
as another metric. BLEU is an automatic evaluation metric widely
used in machine translation studies. It calculates the similarity of
machine-generated translations and human-created reference trans-
lations (i.e., ground truth). BLEU is defined as the product of n-gram

precisionl and brevity penalty: BLEU = BP x exp ( er:]:l wnlogp,,)

where each pj, is the precision of the n-grams, i.e., the ratio of length
n token subsequences generated by the machine translator that are
also present in the ground-truth translation. wy, is the weight of
different length of n-gram summing to one. It is a common prac-
tice [55] to set N as 4 and w,, = ﬁ BP is the brevity penalty which
prevents the system from creating overly short hypotheses (that
may have higher n-gram precision). BP is 1 (¢ > r), otherwise
e(1-7/¢) where r is the length of ground-truth translation, and c
is the length of machine-generated translation. BLEU gives a real
value with range [0,1] and is usually expressed as a percentage. The
higher the BLEU score, the more similar the machine-generated
translation is to the ground truth translation. If the translation
results exactly match the ground truth, the BLEU score is 1 (100%).

6.3 Accuracy Evaluation

We use randomly selected ~7% of Android UI dataset (10804 pairs
of Ul images and GUI skeletons) as test data for accuracy evaluation.
None of the test data appears in the model training data.

6.3.1 Overall Performance

As seen in Figure 8(a), among all 10804 testing UI images, the
generated GUI skeletons for 6513 (60.28%) Ul images exactly match
the ground truth GUI skeletons, and the average BLEU score over
all test UI images is 79.09, when the beam width is 1 (i.e., greedy
search). Furthermore, for only 9 of all test UI images, our model
fails to generate closed brackets. This result shows that our model
successfully captures the composition information of container
components. When the beam width increases to 5, the exact match

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

ol ————

Value (percentage)
Value (percentage)

iU
= ExactViatch
8 o

3 s s 4 s 3 7
Beam width Hierarchy depth

(a) Beam width (b) The depth of component hierarchy

Value (percentage)
Value (percentage)

5 10 15 20 5 50 55 60 65 3 6

25 30 35 40 a5
GUI component

2 5
Container

(c) #GUI Components (d) #Container
Figure 8: Impact of beam-width and generation target complexity

rate and the average BLEU score increase to 63.5% and 86.94, respec-
tively. However, the increase after beam — width = 2 is marginal.
Therefore, we use beam — width = 2 in the following experiments
considering a balance of computation cost and accuracy.

6.3.2 Performance by Generation Target Complexity

As we show in Figure 6(b), the ground-truth GUI skeletons (i.e.,
the targets to generate) in our dataset vary greatly in terms of the
number of GUI components (#GUI components), the number of
container components (#containers/compositions), and the depth
of component hierarchy. These three dimensions define the com-
plexity of GUI skeleton generation tasks. To better understand the
capability of our neural machine translator, we further analyze the
accuracy of our translator for the ground-truth GUI skeletons with
different #GUI components, #containers and depth.

As #GUI components has a wide range, we bucket the ground-
truth GUI skeletons by 5 intervals of #GUI components (i.e., 1-5,
6-10, ...). Similarly, we bucket the ground-truth GUI skeletons by
3 intervals of #containers (i.e., 1-3, 4-6, ...). We average the exact
match rate or the BLEU score of a generated GUI skeleton and
the corresponding ground-truth GUI skeleton for each bucket. Fig-
ure 8(b), 8(c) and 8(d) present the results.

Intuitively, the more GUI components and the more containers
to generate, the deeper of a component hierarchy to generate, the
more challenging a generation task is. However, our results show
that our translator works very well for a wide range of generation
target complexity. The BLEU score remains very stable (above 80)
when there are 15 or more GUI components to generate, 6 to 21
containers to generate, and/or 4 to 8 depth of component hierarchies
to generate. The test data in these ranges accounts for 66.75%,
72.37% and 77.54% of all test data, respectively. The exact match
rate remains around or above 60% for a relatively narrower range
of #GUI components (15-55), #containers (6-15) or the depth of
component hierarchies (4-7). Although our translator is less likely
to generate an exact match when the GUI skeleton to generate is
too complex (> 55 GUI components, > 15 containers and/or > 7
depth), it can still generate a GUI skeleton that match largely with
the ground truth (i.e., high BLEU scores).

A surprising finding is that our translator’s accuracy degrades
when the GUI skeletons is too simple (< 10 GUI components, < 3
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containers, and/or < 3 depth). We will elaborate the common causes
for this result in Section 6.3.4.

6.3.3 Analysis of Visual Understanding and Generation Capability

We randomly sampled 10% of the generated GUI skeletons for
manual observation. We manually study the differences between
these generated GUI skeletons and their ground truth (input UI
images). This section analyzes our translator’s visual understanding
and GUI skeleton generation capability. Section 6.3.4 summarizes
common causes of generation errors.

We find that our translator can reliably distinguish different
types of visual elements and generate the right GUI components.
Figure 9(a) and 9(b) show two challenging cases. Figure 9(a) shows
the setting Ul of a puzzle game in which the game icon (highlighted
in red box), contains a table of characters. Our translator correctly
recognizes the region in the red box as an image and generates
a ImageView for it instead of TextView. The Ul in Figure 9(b) con-
tains a background image with some Ul elements in the foreground
(highlighted in red box). Our translator correctly teases apart the
foreground elements and the background image, rather than con-
sidering the UI elements as part of the background image.

An interesting observation is that our translator can reliably
determine what text elements in Ul images look like even when
the texts are written in different languages (e.g., Figure 9(c) and
Figure 10(b)). During automated Ul exploration, different language
settings of an app may be triggered so that we can collect UI im-
ages containing texts of different languages. For the GUI skeleton
generation task, the exact text content does not matter much. Our
translator can abstract language-independent text-like features in
Ul images, which makes it language independent.

We find that our translator is robust to complex spatial layout
of Ul elements in a UI design. Figure 9(c) shows a UI design that
requires 6 depth of component hierarchy, and Figure 9(d) show a
UI design with 60 GUI components that vary in shape, size and
alignment. For both cases, our translator generates the exact-match
GUI skeleton as the ground truth.

We observe that many differences between the generated and
ground-truth GUI skeletons represent alternative implementations,
rather than generation errors. For example, the ground truth for
the control in the red box in Figure 11(a) is a ToggleButton, while
our translator generates a Switch for the control. ToggleButton and
Switch would be interchangeable for implementing this control.
Figure 11(b), 11(c) and 11(d) show three examples of using different
Android layouts: compose components in a layout (generated) or
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hardcode position components (ground-truth), use ListView (gener-
ated) or newer API RecyclerView (ground-truth), or use LinearLayout
(generated) or RelativeLayout (ground-truth). Which option is more
appropriate for an app depends on the app’s development history
and usage scenarios, but both options would produce the same
spatial layout effects of the UI designs.
6.3.4 Common Causes for Generation Errors

Our qualitative analysis identifies some common causes of gen-
eration errors. First, when a Ul has many similar Ul elements (e.g.,
Figure 11(a)), our translator sometimes may not generate the exact
same number of GUI components. Second, when several neighbor-
hood texts in one line use similar fonts and styles (e.g., Figure 11(b)),
our translator may regard them as one text component. Third, when
a Ul element is only partially visible (e.g., covered by suspension
menu in Figure 11(c)), our translator may not recognize the blocked
Ul element. Fourth, our model sometimes cannot discriminate small
Ul elements on top of a complex image especially when the Ul ele-
ments has similar visual features to some parts of the image (e.g.,
the red box in Figure 11(d)).

In addition, we identify two common causes for the degraded
accuracy on generating simple Uls. First, Ul elements in simple
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Table 1: The accuracy results for 20 completely unseen apps

ID App name Category #Installation #Image  ExactMatch (%)  BLEU
1 Advanced Task Killer Productivity 50M-100M 89 78.65 95.05
2 00Voo Video Call, Text&Voice Social 50M-100M 46 78.26 95.75
3 ColorNote Notepad Notes Productivity 50M-100M 53 77.36 95.79
4 4shared Entertainment 100M-500M 57 71.93 88.72
5 Badoo - Meet New People Social 50M-100M 28 71.42 93.16
6 Mono Bluetooth Router Music & Audio 1M-5M 79 69.62 99.17
7 Automatic Call Recorder Tools 50M-100M 59 69.49 94.71
8 Flashlight HD LED Tools 50M-100M 42 66.67 91.42
9 Solitaire Game 50M-100M 30 66.67 85.83
10 AVG AntiVirus Communication ~ 100M-500M 68 60.29 86.66
11 ASKfm Social 50M-100M 52 59.62 92.90
12 Color X Theme-ZERO launcher ~ Personalization 1M-5M 49 59.18 78.53
13 Smart Connect Tools 100M-500M 31 58.06 72.83
14  History Eraser-Privacy Clean Tools 10M-50M 70 57.14 96.00
15 Pixlr-Free Photo Editor Photography 50M-100M 59 47.46 77.88
16 SoundCloud-Music & Audio Music & Audio 100M-500M 49 44.90 80.19
17 Office Documents Viewer (Free)  Personalization ~ 1M-5M 96 42.71 88.04
18 Super Backup : SMS&Contacts  Tools 5M-10M 92 40.22 93.55
19 Photo Effects Pro Photography 50M-100M 90 37.78 88.14
20  Mobile Security & Antivirus Tools 100M-500M 69 30.43 67.94
AVERAGE 60.4 59.39 88.11

Uls often contain little context information for determining the
appropriate GUI components for them. For example, the green
rectangle in Figure 12(b) is actually a button, but our translator
mistakes it as an image. Other design factors like low contrast
background in Figure 12(a) could be more problematic for a simple
UI with little context information. Second, some mobile apps, like
map navigation and web browser, have very simple main Ul with
just several high-level encapsulated components inside, but the
content being displayed in the component can be rather complex.
For example, the navigation map in Figure 12(c) and a web page
in Figure 12(d) can be displayed by one GUI component such as
MapView and WebView. However, our translator may mistake the
content displayed as part of the UI to implement, and generate
unnecessary basic GUI components.

6.4 Generality Evaluation

To further confirm the generality of our translator, we randomly
select another 20 apps that are not in our UI dataset. To ensure
the quantity of test data, apps that we select have at least 1 millon
installations (popular apps often have rich-content GUIs). Among
these apps, we randomly select 20 apps for which our data collec-
tor collects more than 20 UI images. These 20 apps belong to 10
categories. We collect in total 1208 Ul images (in average 60.4 per
app). We set beam width as 2 for generating GUI skeletons.

Table 1 summarizes the information of the selected 20 apps and
the accuracy results of the generated GUI skeletons on the Ul images
of these apps (sorted by exact match rate in descending order). The
average exact match rate is 59.47% (slightly lower than the average
exact match rate (63.5%) of Android Ul test data), and the average
BLEU score is 88.11 (slightly higher than the average BLEU score
(86.94) of Android UI test data). These results demonstrate the
generality of our translator.

We manually inspect the apps with low exact match rate (< 50%)
or BLEU score (< 80). We observe similar causes for generation
errors as those discussed in Section 6.3.4. For example, personal-
ization and photography apps have Uls for users to upload and
manipulate documents or images. Similar to the map and web page
examples in Figure 12(c) and Figure 12(d), our translator may mis-
take some content displayed in the Uls as part of the Uls to generate,
which results in low exact match rate or BLEU score for these apps.
However, although the exact match rate is low for some such apps
(e.g., 17-Office Document Viewer, 19-Photo Effects Pro), the BLEU
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score is high which indicates that the generated GUI skeletons still
largely match the ground truth.

The app Mobile Security & Antivirus is an interesting case, which
has the lowest exact match rate and the lowest BLEU score. We
find that its developers use LinearLayout or RelativeLayout rather
randomly when the two layouts produce the same Ul effect (similar
to the example in Figure 10(d)). In contrast, our translator tends to
use one GUI component consistently for a type of UI spatial layout,
for example just LinearLayout, which results in many mismatches
between the generated GUI skeletons and the actual implementation
of Mobile Security & Antivirus.

6.5 Usefulness Evaluation

We conduct a pilot user study to evaluate the usefulness of the
generated GUI skeleton for bootstraping GUI implementation.

6.5.1 Procedures

We recruit eight PhD students and research staffs from our school.
We ask each participant to implement the same set of 5 Ul images
in Android. We select two relatively simple UI design images, two
medium-complex images, and one complex image for the study.
Participants need to implement only a skeleton GUI that replicates
Ul elements and their spatial layout in a Ul image, without the need
to set up components’ properties (e.g., font, color, padding, etc.). The
study involves two groups of four participants: the experimental
group Py, Py, P3, P4 who start with the generated GUI skeletons by
our tool, and the control group Ps, Pg, P7, Ps who start from scratch.
According to pre-study background survey, all participants have
more than two-years Java and Android programming experience
and have developed at least one Android application for their work.
Each pair of participants (Py, Px+4) have comparable development
experience so that the experimental group has similar expertise to
the control group in total. Participants are required to use Android
Studio to avoid tool bias and have up to 20 minutes for each design.

We record the time used to implement the UI design images.
After each Ul image’s implementation, participants are asked to
rate how satisfied they are with their implementation in five-point
likert scale (1: not satisfied at all and 5: highly satisfied). After the
experiment, we ask a research staff (not involved in the study)
to judge the similarity of the implemented skeleton GUIs to the
respective Ul images (also five-point likert scale, 1: not similar at all
and 5: identical layout). This judge does not know which skeleton
GUI is implemented by which group.
6.5.2  Results

Box plot in Figure 13 shows that the experiment group imple-
ments the skeleton GUIs faster than the control group (with average
6.14 minutes versus 15.19 minutes). In fact, the average time of the
control group is underestimated, because three participants fail to
complete at least one Ul image within 20 minutes, which means
that they may need more time in the real development. In contrast,
all participants in the experiment group finish all the tasks within
15 minutes. The experimental group rates 90% of their implemented
GUIs as highly satisfactory (5 point), as opposed to 15% highly sat-
isfactory by the control group. This is consistent with the similarity
ratings of the implemented GUIs to the Ul images given by the
judge. On average, the satisfactory ratings for the experiment and
control group is 4.9 versus 3.8, and the similarity ratings for the
experiment and control group is 4.2 versus 3.65.
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Figure 13: The comparison of the experiment and control group. * denotes
p < 0.01 and ** denotes p < 0.05

We believe the above results are because the generated GUI
skeletons by our tool give participants a reliable starting point
for GUI implementation. Guided by the generated GUI skeletons,
participants are clear about what components to use and how to
compose them in a proper order. Then, they mainly need to fix some
generation errors and make some adjustment of component lay-
outs. Without the help of the generated GUI skeletons, the control
group has to determine in a trial-and-error manner what compo-
nents to use and how to compose them, which results in the longer
implementation time and less satisfactory GUI implementations.

To understand the significance of the differences between the
two groups, we carry out the Mann-Whitney U test [22] (specif-
ically designed for small samples) on the implementation time,
satisfactory and similarity ratings. The test results in Figure 13
table suggests that our tool can significantly help the experimental
group implements skeleton GUIs faster (p — value < 0.01), creates
more satisfactory GUIs (p — value < 0.01) that are more similar
to the UI design images (p — value < 0.05). According to our ob-
servations, starting with the generated GUI skeletons, even the
less experienced participants in the experimental group achieve
the comparable performance to the most experienced participant
in the control group. Although by no means conclusive, this user
study provides initial evidence of the usefulness of our approach
for bootstraping GUI implementation.

7 RELATED WORK

UI design and implementation require different mindset and ex-
pertise. The former is performed by user experience designers and
architects via design tools (e.g., Sketch [4], Photoshop [1]), while the
latter performed by developers via development tools (e.g., Android
Studio [2], Xcode [5]). Our work lowers the transition barrier from
Ul design images (the artifacts from UI design) to GUI skeletons (the
starting point of GUI implementation). Existing tools well support
these two phases respectively, but none of them supports effective
transition from UI design images to GUI skeletons.

Supporting this transition is challenging due to the diversity of
Ul designs and the complexity of GUI skeletons (see Figure 6(b)).
Some tools [21, 30, 45] use blockwise histogram based features
(e.g., scale-invariant feature transform [39]) and image processing
methods (e.g., edge detection [13], OCR [51]) to identify Ul elements
from images. Other tools (e.g., Export Kit [3]) use the metadata of
Ul elements in complex image formats exported by design tools
(e.g., the PSD file by Photoshop) to assist the transition from UI
design images to GUI implementations. However, these tools are
rigid because they are built on limited, hand-designed rules for
visual feature extraction and image-to-GUI transformation.

Different from these rule-based tools, our work is inspired by
recent successes of deep learning (DL) models in image classifica-
tion [35, 57], captioning [19, 36, 58], and machine translation [15,
60]. DL models are entirely data-driven, and do not require manual
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rule development. The most related work are image captioning tech-
niques, but they take as input natural scene or digital document im-
ages and generate a sequence of words in natural languages [36, 58]
or markup ones (e.g., latex expressions [19]). In software engineer-
ing community, some DL based methods have been proposed to
generate code given input-output examples [8, 27], partially com-
pleted code [59] or feature descriptions [26, 42], or generate code
comments [6] or code-change commit messages [50]. But our work
is the first deep learning based technique, trained with real-world
App Ul data, to convert Ul requirements (in the form of Ul images)
into a hierarchy of GUI components.

Before deploying deep learning models, a high-quality dataset is
required for the models to learn important data features for a given
task. Computer vision and NLP communities usually adopt crowd-
sourcing approach to develop such datasets for model development
and benchmark [18, 38]. A major contribution of our work is to
develop an automated program analysis technique to automatically
collect large-scale UI data from real-word apps for implementing
and evaluating the deep learning based Ul-image-to-GUI-skeleton
generation. This makes our work significantly different from exist-
ing work [10] which has similar goal but are developed based on
artificial UI data generated by rules.

Our approach is generative based on the UI design and GUI im-
plementation knowledge learned from existing apps. An alternative
way to reuse such knowledge in existing apps is search-based meth-
ods. To use IR based code search methods [14, 33, 40], an accurate,
concise description of Ul elements and spatial layout in an image is
required but hard to achieve. It would be desirable to search GUI
implementation by UI image directly but a challenge in image-GUI
search is how to match two heterogeneous data. The only work
having this flavor is Reiss’s work [48]. But this work internally
uses templates to transform an input UI sketch into a structured
query for matching GUI code. These sketch-to-query templates
limit the generality of the approach. Furthermore, the fundamental
difference between our generative approach and search-based ap-
proaches is that our approach can generate GUI skeletons that are
not present in a code base, while the searching method can only
return the information available in the code base.

8 CONCLUSION

This paper presents a generative tool for Ul-image-to-GUI-skeleton
generation. Our tool consists of two integral parts: a deep learning
architecture and an automated UI data collection method. Our tool
possesses several distinctive advantages: 1) it integrates feature
extraction, spatial encoding and GUI skeleton generation into an
end-to-end trainable framework. 2) it learns to abstract informa-
tive Ul features directly from image data, requiring neither hand-
craft features nor image preprocessing. 3) it learns to correlate
UI features and GUI components and compositions directly from
Ul images and GUI skeletons, requiring no detailed annotations
of such correlations. 4) it is trained with the first large-scale Ul-
image-GUI-skeleton dataset of real-world Android applications.
These advantages gives our tool unprecedented speed, reliability,
accuracy and generality in over 12000 Ul-image-to-GUI-skeleton
generation tasks. In the future, we will further test our tool with
different Ul resolutions and orientations. We will also extend our
neural network components to web design and implementation.
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