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Abstract—The Android ecosystem has recently dominated mobile devices. Android app markets, including official Google Play and
other third party markets, are becoming hotbeds where malware originates and spreads. Android malware has been observed to both
propagate within markets and spread between markets. If the spread of Android malware between markets can be predicted, market
administrators can take appropriate measures to prevent the outbreak of malware and minimize the damages caused by malware. In
this paper, we make the first attempt to protect the Android ecosystem by modelling and predicting the spread of Android malware
between markets. To this end, we study the social behaviors that affect the spread of malware, model these spread behaviors with
multiple epidemic models, and predict the infection time and order among markets for well-known malware families. To achieve an
accurate prediction of malware spread, we model spread behaviors in the following fashion: 1) for a single market, we model the
within-market malware growth by considering both the creation and removal of malware, 2) for multiple markets, we determine market
relevance by calculating the mutual information among them, 3) based on the previous two steps, we simulate a Susceptible Infected
(SI) model stochastically for spread among markets. The model inference is performed using a publicly-available well-labeled dataset
ANDRADAR. To conduct extensive experiments to evaluate our approach, we collected a large number (334,782) of malware samples
from 25 Android markets around the world. The experimental results show our approach can depict and simulate the growth of Android
malware on a large scale, and predict the infection time and order among markets with 0.89 and 0.66 precision, respectively.

Index Terms—Malware Spread Prediction, Epidemic Model, Malware Lifecycle, Android Market, Ecosystem Security.
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1 INTRODUCTION

A NDROID has become the largest and prevailing mobile
platform since 2011 [1]. Millions of Android applications,

hereinafter referred to as apps, provide end users a convenient
and swift environment for online education, shopping, entertain-
ment, etc. Meanwhile, Android also attracts a large number of
cybercriminals who create malware to harvest users’ sensitive
data, cause financial loss, and remote-control devices [2, 3].
The stunning growth of Android malware poses a huge threat
to users, and this situation has been even exacerbated in recent
years since Android malware has become more infectious and
disseminated [4]. In the early years of Android development,
malware spread mainly relied on SMS/MMS, file duplication
with USB, and Internet access [5]. Newly-discovered malware has
leveraged increasingly popular Android app markets to spread [6].

Restraining Android malware’s propagation and spread has
proven to be an effective proactive pathway to reduce the damages
it causes [7]. Unfortunately, however, it is non-trivial to study
and identify the propagation and spread mechanisms of Android
malware. On traditional PC OSes, the malware infection is through
the access to multiple media (e.g., emails, URL links, and ex-
ternal storage) [8]. On iOS, due to Apple’s rigorous review and
inspection of iOS apps, only the certified apps can be put on the
shelf for users to download. Different from both the traditional
and iOS platforms, Android malware utilizes the app markets
for propagation, including the official market GOOGLEPLAY and

hundreds of unofficial markets. The users who have downloaded
malware from these markets may unintentionally get their devices
infected. To some extent, to secure the Android ecosystem is to
secure Android app markets.

Android market is a digital distribution service that allows
users to browse and download apps. There are two types of
Android markets—Google Play, the official and generally more
regulated Android market that is operated and developed by
Google, and third-party Android markets that are owned by either
profitable or non-profitable companies. Due to the unfaithful secu-
rity inspection of Android markets and the continuous emergence
of malware variants and zero day malware, Android markets, espe-
cially third-party markets, become the dominating venue through
which to disseminate malware [9, 10]. Hence, securing Android
markets is not an easy task, considering the enormous malware
(especially the piggybacked apps [11]) and unofficial markets.

As the problem of third party markets is comparatively new,
there is still no clear understanding and vigorous study on the
increase and spread of Android malware within or between mar-
kets. Existing studies have extensively investigated the epidemic
model of traditional malware [12–14], whereas research on An-
droid malware propagation is not adequate to fully understand its
propagation among markets. Yu et al. [15] have made the first step
to study the distribution of malware in terms of networks in three
stages—early, final and late. The infected smartphones formed a
specific network and were classified by the type of carrying mal-
ware. Hence, the existing studies on mobile malware propagation
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Fig. 1: Malware-related behaviors in the Android ecosystem

and spread center around the end users or smartphones (treating
end users as the nodes in a connected network).

Different from above work, we take Android markets as
nodes, and form a connected network. Malware, as a pathogen
on Android, can proliferate within one market and amplify its
destructive effect by markets. By analogy with epidemic diseases,
malware gets markets infected in the course of spread. In such
cases, an accurate model of malware behaviors can facilitate
prediction of malware propagation and spread, and thereby pro-
tect Android markets from infection. In particular, we aim to
address the following research problems in security engineering
of Android markets: Given one market, how to predict the number
of malware that resides in it? Given a set of markets and the
probabilities of app transmission among them, how to predict the
number of infected markets at a certain time for a certain malware
family? Succeedingly, how to predict infection order with maximal
probability for a certain malware family on the set of markets?

However, we are facing some critical challenges that impede
an adequate research on the above problems. First, insufficient
data is publicly available for this study — the malware data exists
in a variety of Android markets. It impedes the study of malware
spread between markets. Second, since the spread mechanism of
malware is subject to multiple factors’ interference, a comprehen-
sive model is desired to accurately depict Android malware spread
among markets, based on the within-market growth model.

We start from inferring a preliminary model using 20,000 well-
labelled malware samples from the study [16]. Then, to address
the issue of insufficient data, we further collect 334,782 malware
samples to evaluate the model. To construct a comprehensive
model, we infer the potential connections between markets by
calculating the mutual information among markets in a pairwise
way. The mutual information computes the percentage of shared
apps amongst two markets, and thereby implies the probability of
app transitions between markets.

Technically, to provide an accurate model of malware spread,
we first identify the social behaviors involved in malware spread
(see Section 2). Given a market and a malware family, we model
the behaviors on malware creation and removal to build a growth
model of that family (see Section 3.1). Next, we model between-
market spread patterns of Android malware by combining mu-
tual information and epidemic theory. Specifically, we apply
ARACNe [17] to calculate the mutual information among markets.
The mutual information, acting as closeness degrees between
markets, connect all involved markets to form a network through
which malware spreads. We then propose an SI (Susceptible-
Infected) model by incorporating mutual information and simulate

the spread of malware stochastically between markets (see Section
3.2). Lastly, we evaluate the model on 334,782 malware samples
from 25 markets and the experimental results show our model can
be highly coherent to these malware samples.

To the best of our knowledge, this is the first work to study
the market-oriented malware spread model (which covers both
within-market and between-market spread) and apply it to predict
infection time and order of markets for Android malware.

We make the following contributions in the paper:
• The first attempt to study connections between Android

markets from the perspective of malware spread. To the best
of our knowledge, previous studies mainly consider how
malware infects and spreads from the perspective of end
devices or users. Also different from the study on the iOS
malware dissemination through the single infection source
APP STORE [18], we focus on the impact of third-party or
unofficial app markets in Android, which are often the first
victims and hosts for infection.

• Building multiple computable models to predict the between-
market spread of Android malware. We first model the
propagation of a malware family (i.e., the growth model)
within a market. Based on that, to model between-market
spread, we propose a comprehensive model that combines
mutual information and epidemic theory.

• Predicting malware infection time and order for markets
on an unprecedentedly large data set from the real world.
334,782 real-world malware samples are used to evaluate our
model. The results show the within-market model provides
a good fit to the data and the between-market model can
effectively predict the infection time and order of malware
among markets with 0.89 and 0.66 precision, respectively.

The remainder of the paper is organized as follows: Section 2
states the problems to solve in this study; Section 3 introduces the
social behaviors that affect malware propagation and spread, and
then proposes theoretical models to depict malware propagation
and spread; Section 4 conducts several experiments to validate
our theories and models; Section 5 discusses the limitations of our
work, and promising applications in the field of security; Section 6
briefly describes the related work on modelling malware propaga-
tion and spread; We summarize our work in Section 7; Last, we
attach supplementary investigation and results in Section 8.

2 PROBLEM STATEMENT

In this section, we first uncover behaviors that affect malware
propagation and spread on Android, and then provide a definite
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TABLE 1: Notations of symbols in the study

Notation Description

I(t) The number of infected apps at time t
Im(t) The number of infected markets at time t
Sm(t) The number of susceptible markets at time t
Tc(a) The creation time for the app a
Tr(a) The removal time for the app a
T (M) The infection time for the market M
M [i, j] The mutual information between market i and j

0.4

0.9

0.8

0.2 0.6

0.9 0.9
0.3 0.7

0.1

0.80.6

0.6

M1

M3M2

I1

M4

M5 M6

M7

I1

I3

I2

…

S1
S2

S3 S4

… β

I1
I2

I3

S1

S2

S3

market

γ
β

Susceptible markets Infected markets

P1

P2

P3

Fig. 2: Research problems in malware spread

statement for problems to solve in this paper. For ease of under-
standing, we summarize all key symbols used in this paper, and
list them in Table 1.

2.1 Malware-related Behaviors

We illustrate malware-related behavior graph for malware spread
in Figure 1. This graph indicates the most relevant participants
whose behaviors (e.g., creating and disseminating malware) can
significantly affect the malware ecosystem according to [19, 20].
There are four main roles involved in malware spread: 1) devel-
opers, who upload apps into markets (denoted as behavior 1); 2)
attackers, who upload malware into markets (denoted as behavior
2); 3) security analysts, who inspect the uploaded apps (denoted
as behavior 3) and report malware to market admin (denoted
as behavior 4), and; 4) market admins, who remove malware
according to detection results (denoted as behavior 5), and transfer
apps in bulk from other markets (behavior 6).

In one market, Android malware experiences creation, growth,
and removal. When an attacker creates new malware and uploads
it into a market, the malware starts its lifecycle [15]. It may

undergo a fast development by piggybacking other apps [21]
or evolving [22], as the number of malware variants increases
dramatically. However, after its outbreak and popularity for a
while, malware may be detected by anti-virus software. Then the
malware and its variants will be removed from markets gradually.
As reported by [16], the malware still exist in some markets after
a long period of time due to loose checking procedures in those
markets. In Figure 1, behavior 2 increases the amount of malware
directly within a market, and behavior 6 transmits apps from one
market to another market which may also increase the number of
malware. Behavior 5 removes the malware within a market. Note
that behavior 1 refers to users’ unwitting submission of an app
that is actual malware.

According to the study [23], the malware carriers play a
significant role in spreading malware over time. As indicated
by [11, 16], some markets share a considerable number of repli-
cated apps in between, which implies that an app transmission
process exists between these markets. The spread of Android
malware comes from two aspects: malware is distributed into
different markets, and malware is moved from one market to
another. As shown in Figure 1, behaviors 1, 2, 6 can all spread
malware between markets. Note that behavior 6 refers to app
transmission due to app sharing (or copying) by the admins of
markets.

2.2 Problem Definition
Without loss of generality, we provide the following definitions
for the malware ecosystem:

Definition 1. An app market is a set of susceptible and infected
apps M = {S, I}. S is the set of susceptible apps (i.e., benign
apps) S = {a|a is not malware}, and I is the set of infected
apps (i.e., malware) I = {a|a is malware}.

In the scope of one market, the number of malware is con-
stantly changed due to uploading and removal. Let Tc(a), Tr(a)
be the creation and removal time, respectively. To quantify mal-
ware propagation along with time, we regard I(t) as the number
of malware at time t.

We assume that there are N app markets in total, i.e.,
N = {M1,M2, ...,Mn}. One marketM is infected by malware
at time t if |I(t)| > 0. Malware spread across markets until
all markets are thoroughly infected. Let Im(t) be the infected
markets at time t. Then the spread velocity of malware can be
computed with the differential equation d Im(t)

dt . In the meantime,
one thorough infection follows a proper order which is defined
below.

Definition 2. Infection order is the infection sequence of app
markets as per time π = 〈Mi1 ,Mi2 , ...,Min〉. Let T (Min) be
the infection time for market M which is the n-th market to be
infected. Then T (Mij ) ≤ T (Mik) when 1 ≤ j < k ≤ n.

It is significant to understand and further predict malware
propagation and spread between markets. With an accurate pre-
diction, security analysts and users can take an instant measure
to counter an upcoming outbreak of malware. In this paper,
we propose three problems that exhibit security concerns during
malware spread as shown in Figure 2.
P1. Within a market M , malware can be created and removed, and
the amount is dynamically changed along with time. In this study,
we intend to approximate the number of malware samples within
the market M at time t, i.e., |I(t)|.
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P2. Markets can be infected in the course of malware spread. Let β
be the probability of market transmitted from state “susceptible”
to state “infected”, and N be the total number of markets, i.e.,
|Im(t)| + |Sm(t)| = N . Then, we will explore the number of
infected markets Im(t) at time t.
P3. There exists an “app flow” between markets as per behavior
6, which reveals the closeness between markets. If some markets
have been infected by malware initially, the remaining markets
will be infected eventually and the infection order relies on
the closeness between markets. Given an arbitrary number j of
infected markets Im(0) where 0 < j < n, we will identify one
infection order π = {Mij+1 , ...Min} with maximal probability.

3 SPREAD MODEL OF ANDROID MALWARE

In this section, we proposal two models to predict malware propa-
gation and spread between markets. In particular, we demystify the
lifecycle of malware within one market and construct models to
exhibit its dynamic propagation for solving P1. Further, we extend
epidemic models to illustrate malware spread between markets,
which is akin to how infectious disease spreads in epidemiology.
These models are designed to solve P2 and P3. Note that our
models are derived from the study on malware-related behaviors
in the malware ecosystem and conclusive models in previous
studies [15, 24, 25]. We give more details in the following sections.

3.1 The Within-market Propagation of Android Malware
The within-market propagation of Android malicious apps is
determined by their creation and removal. Malware is generally
created via injecting malicious code into normal apps by attackers
— infecting those apps. Once an app is determined to be malware
by the market administrators, it as well as its variants will be
deleted from the market. However, there is typically a time delay
between malware creation and removal. This delay differs depend-
ing on the app market (e.g., its security inspection capability) and
malware family (e.g., its maliciousness), hence leading to different
patterns of malware growth.

3.1.1 Simple model of malware growth
As with previous investigations into malware modelling, we start
with a simple model that assumes a linear rate of growth [5]
(Equation 1). In this model, malware-infected apps are added to
a market at a linear rate βI (where I is the number of infected
apps in the market). In other words, the rate at which infection
increases is assumed to be proportional to the number of currently
infected apps [15]. Whilst this is a simple model and is unlikely
to be accurate in the general case, it is appropriate for the early
stages of an infection (i.e., before density dependent factors [26]
take effect) [15]. We also show how this model can accurately
represent the overall growth of malware in a market, since (in
the two datasets we have collected) the overall growth of malware
shows no signs of slowing down. We use this as a starting point for
more sophisticated models, incorporating the differences between
malware families (see Section 3.1.2) and the spread of malware
across multiple markets (see Section 3.2.1).
(Theoretical assumption for the growth model) This simple
malware model may be motivated by looking at Figure 1: newly
infected apps from behaviors 1, 2 and 6 are all proportional
to the number of currently infected apps. In the absence of
density dependence, the rates at which these behaviors occur
may be assumed to be linear. In behavior 1, users or developers

unwittingly upload more infected apps when the malware is more
common; in behavior 2, attackers infect more apps for uploading
if seeing its popularity; in behavior 6, market A gets more infected
apps if market B has more. Similarly, the rate of malware removal
depends on the number of infected apps, since as more apps are
infected, it becomes more likely for security analysts to notice
and detect the infected apps, and then report them to admins for
removal (behaviors 3, 4 and 5). One further reason why density
dependence does not occur in the overall growth of malware is
because attackers may upload any number of variations of an
existing app or of new apps they created. The rate of growth
is proportional to the number of currently infected apps, since
attackers use and adapt malware that has already been uploaded,
but it is not proportional to the number of uninfected apps, since
there is no upper limit to the number of apps that can be infected.

dI

dt
= (β − γ)I, and dR

dt
= γI (1)

In Equation 1, the growth rate of infected apps is the subtrac-
tion of the removed number (γI) from the newly added number
(βI). After solving these differential equations, we have this
analytical solution for I:

I(t) = I(0) exp((β − γ)t) (2)

We have collected two datasets denoted as DS1 and DS2, re-
spectively. DS1 contains a number of apps as well as their removal
time, and DS2 supplements creation time to apps. Therefore, we
compute the creation rate and removal rate of malware separately
(using nonlinear least squares estimation and Bayesian parameter
estimation): the growth rate (β) is determined according to the
cumulative number of malware apps created over time in DS2 (for
each market); the removal rate (γ) is calculated by aligning all the
malware-infected apps created (for each market) in DS1 to time
t = 0 and then recording the time at which each app is removed
(see Equation 3 and 4, respectively).

I(t)DS2 = I(0)DS2 exp (βt), β > 0 (3)

I(t)DS1 = I(0)DS1 exp (−γt), γ > 0 (4)

Remark. With Equation 3 and 4, we can portray the increasing
trend and decreasing trend of malware within one market. It solves
problem P1 by quantifying residual malware as a security measure
to market.

3.1.2 Malware-family specific growth in each market
The previous model may be extended to represent the number
of infected apps for a particular family of malware (rather than
just the total number of malware-infected apps). In order to do
this, we introduce a new concept, visibility (νf ). Visibility is
a constant value for each malware family that determines how
quickly infected apps are detected by administrators and removed.
It may be affected by the number of malware samples, the ability
of detection, etc. It can also dissuade attackers from uploading par-
ticular families of malware, if they become too easily detectable
and are hence less effective. The visibility of a particular malware
family (f ) depends on a large number of factors, such as how well
its malicious code is hidden against detection, the impact it has on
an app’s behavior and the time until that impact takes effect.
(Theoretical assumption for the family specific growth) Vis-
ibility may be interpreted in terms of cooperation/competition
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between malware: malware families that are not highly visible
to security analysts may encourage more attackers to upload apps
of the same family, whereas the more infected apps there are of
a visible family, the more likely these apps are to be removed.
To represent this behavior, we turn to the Hill Equation [27]. Hill
Equation is widely used to represent the degree of cooperative
binding between ligands and the macromolecules in biochemistry.
This degree is often enhanced if there are already other ligands
present on the macromolecules. Visibility of malware exhibits
the similar characteristic, i.e., the lower the visibility is, the
lower probability of malware being removed, and thereby the
more motivated the malware authors are to upload more samples.
Instead of binding affinity, we use the Hill Equation to represent
how the rate at which malware is added/removed is affected by
the number of malware-infected apps currently on the market,
according to the visibility parameter (νf ). To achieve this, we use
a generalized form of the Hill Equation [28]:

I(t) =
κ

[1− J exp (−βt)]1/θ
(5)

In this model, κ denotes the curve’s maximal value, and is
calculated as κ = 1

νf
; J denotes a constant for the curvature, and

is calculated as J = 1 −
(
κ
I0

)θ
; θ is a constant denoting the

steepness of the curve (θ = 5).
Remark. With Equation 5, we can calculate the immediate
number of malware of a certain family residing in one market.
By complementing the single model aforementioned, it solves
problem P1 by accurately depicting the characteristics of malware
families during propagation within one market.

3.2 The Between-market Spread of Android Malware

As shown in Figure 1, app transmission between markets (behav-
ior 5) influences the spread of malware greatly. According to [16],
replicas of malware apps extensively exist in alternative markets.
To measure the transmission between markets, we compute their
mutual information. We then present a deterministic epidemic
model to depict malware spread between markets.

3.2.1 Mutual information between markets
App transmission is a directed action from one market to another.
We can predict how likely malware is to spread between particular
markets by calculating their mutual information.

(Theoretical assumption for applying mutual information)
Unlike linear measurements of inter-dependence (e.g. the Pearson
Correlation Coefficient), mutual information takes into account
all forms of dependence (linear and non-linear). In this scenario of
Android markets, the interdependency does not only exist between
two markets. Instead, app transmission may occur amongst more
than two markets, which implies that the mutual information is
more suitable to measure the relativity between markets. Mutual
information can be described as the amount of information that
can be obtained from one market about the behavior of another.
For N markets, we define a symmetric N ×N matrix M , where
M [i, j](1 ≤ i, j ≤ N) denotes the mutual information between
market i and j, and can be used as an approximation for the
likelihood of apps in market i transmitting into market j.

We calculate mutual information using ARACNe (Algorithm
for the Reconstruction of Accurate Cellular Networks [17]).
ARACNe is typically applied to identify complex interactions
between genes, according to differences in gene expression (i.e.,
RNA) over time. In our application, we replace genes with markets
and gene expression with the number of malware apps uploaded
each month (from a specific malware family). A Gaussian kernel
estimator (see Equation 6) is used, where P is the set of time
points (in our case, months) and xi and yi are the values (number
of infected apps) at each time point i; f̂( ) is the marginal
probability density, f̂( , ) is the joint probability density and N
is the sample size (i.e., number of markets). The kernel density is
tuned by maximising the posterior probability by Bayes theorem,
according to cross validation.

M [i, j] =
1

N

∑
i

f̂(xi, yi)

f̂(xi)f̂(yi)
(6)

We use the resulting matrix M to simulate the spread of
malware between markets (see Section 3.2.3). The higher the mu-
tual information between an infected market i and an uninfected
market j, the more likely it is that j will be infected by malware
spreading from i.

3.2.2 Epidemic (SI) model for predicting between-market
malware spread
Epidemic models have been used extensively to understand and
theorise about the spread of various forms of smartphone mal-
ware [5]. The particular epidemic model we use is known as the
SI (i.e., Susceptible-Infected) model. This model has been applied
before in a theoretical study on the spread of mobile phone viruses
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Fig. 6: Three samples to illustrate the growth model for a specific malware family. The x axis denotes the number of days since the
infection, and the y axis denotes the cumulative number of created malware of a specific family in this market.

over Bluetooth and MMS [29]. Variations of this model have
also been used to understand the dynamics of a wide range of
biological diseases, including white-nose syndrome in bats [30]
and bovine tuberculosis in cattle [31].
(Theoretical assumption for applying SI model) The SI model
is suitable for simulating the spread of malware across markets
because complete extinction of a family is uncommon. In theory,
malware eventually becomes extinct once it fails to be effective,
but we did not find any evidence of this happening during the
time frame of our study (Android malware is a relatively new
phenomenon). Although detected malware variants of each family
are removed, new variants are continually added. Hence, we use
the SI model to understand how new families of malware spread
across the markets, from a single point of infection. Our model
can help predict how long it will take from the creation of a
new malware family (in the future) until that family infects each
market.

The SI model contains two mutually exclusive compartments:
S (the number of markets that are susceptible to the disease but
not yet infected) and I (the number of markets that are infected).
Susceptible markets become infected at rate βSI , but infected
markets remain infected and cannot become susceptible again.
Therefore, I is small at first and S is large, but over time, S
decreases and I increases. This behavior can be described by a
pair of differential equations (see Equation 7).

The analytical solution of the SI model is given in Equation 9,
where I0 is the number of markets infected at time t = 0 (in our
case, we assume this is 1), It is the number of markets infected at
time t (as predicted by our model) and N is the total number of
markets (N = S+ I). Having an analytical solution to the model,
allows us to fit it to our data (DS2) using nonlinear least squares
estimation (see Section 3.1). Once the (deterministic version) of
the model has been fit, this gives us a value for β, which we can
then use to simulate the model stochastically (see Section 3.2.3
for stochastic simulation details).

dS

dt
= −βSI (7)

dI

dt
= βSI (8)

It =
NI0

I0 + (N − I0)exp(−βt)
(9)

Remark. Given one set of markets and the initial number of
infected markets, we can compute the number of infected markets
at a certain time with Equation 9. With solving problem P2 , this
model reveals the fierceness of malware spread between markets,
and enables all stakeholders to percept the security of the current
Android ecosystem.

3.2.3 Stochastic simulation for predicting infection order
Stochastic models are employed to describe non-deterministic
behavior and account for sources of error that are not fully
known [32, 33]. In our work, we want to know when markets
will become infected and which market will be infected next.
Both these prediction goals are made more challenging because
of natural uncertainty in the spread of malware over time. We
also need to take into account the connections between markets,
in terms of their mutual information (see Section 3.2.1). Hence,
we simulate the spread of malware between markets (according to
our SI model) stochastically, using the Gillespie algorithm [34].
The Gillespie algorithm is a suitable technique for this simulation,
since it is based on the well-established theory of Monte Carlo
methods.

The Gillespie algorithm samples the next infection event to
occur and the time until that event takes place iteratively, according
to a series of propensity values a1 . . . an. Propensity values
represent the relative rate at which each event is expected to
occur, depending upon the current state. At each step, the Gillespie
algorithm generates two random values between 0 and 1. The first
random value (r1) is used to determine the next market to be
infected µ by sampling markets according to their propensity (i.e.,
mutual information with the currently infected markets), where∑µ−1
j=1 aj < r0

∑n
j=1 aj <

∑µ
j=1 aj . The second random value

(r2) is used to sample the time (τ ) until the next infection occurs
from an exponential distribution, with rate

∑
aj , where aj is

the propensity of event j (given the particular state). This means
infections occur at a Poisson rate, which is appropriate because
infections occur independently of the series of timings that took
place before, depending only on the current state (i.e., Markov
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chain). Inverse transform sampling is used to sample from the
exponential distribution, so τ = 1∑

aj
ln( 1

r2
). It is important to

update the propensities at each step, as depending on the current
state, the rate at which events occur may change (e.g., as more
markets become infected, there are fewer markets left to infect, so
infections occur more slowly).
Remark. With stochastic simulation, we can predict approxi-
mately real infection order of a certain malware family whilst it is
spreading between markets. With solving problem P3, the model
can pinpoint which markets are most likely to be infected next
in terms of probability, and direct market administrators to take
measures against malware infection.

4 MODEL VALIDATION

In this section, we examine our theoretical models using a large-
scale malware dataset in the real world. For the proposed models,
we aim to answer:

• How does malware propagate within market?
• How is the mutual information between different markets?
• Can our spread model predict the infection of a specific

malware between markets effectively?
In order to evaluate the quality of models, we provide two

metrics to measure the discrepancy between the real data and
the estimation models. Residual sum of squares (RSS) [35] is the
accumulation of squares of residuals as follows:

RSS =
n∑
i=1

(yi − f(xi))2

where n is the size of the data set, yi is the actual value of the ith
variable, and f(xi) is the predicted value. The less the RSS value
is, the more suitable the model can fit the data. To avoid unbias,
we leverage residual standard error (RSE) [36] instead which can
be computed as below:

RSE =

√
RSS

d

where d is the degrees of freedom that counts the numbers of
independent pieces of data involved in the estimation [37]. We use
RSE to evaluate the models in Section 4.2 and 4.4.1.

On the other hand, Pearson correlation coefficient [38] is used
to measure the precision of predicted infection time and order
in Section 4.4, which is commonly used to measure the linear
correlation between two variables. Assuming X is the predicted
data, while Y is the actual data, the Pearson correlation coefficient
ρ is calculated as follows:

ρX,Y =
cov(X,Y )

σX σY
(10)

where cov(X,Y ) is the covariance of X and Y , and σX , σY are
the standard deviations of X and Y , respectively. ρX,Y ∈ [−1, 1],
and the larger ρX,Y denotes that our spread model can predict the
infection order more accurately.

4.1 Android App Dataset
Our models are evaluated on two sources of Android apps as
described below.
DS1. ANDRADAR. Lindorfer et al. [16] tracked over 20,000 apps
in 16 Android markets. They recorded the creation time and
removal time for the app in each market and the detection time
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Fig. 7: The statistics of datasets. The left figure shows the region
(including China, USA, and others) from which the apps were
collected. The x-axis of the right figure is the years since the
malware is created, and the y-axis denotes the number (×105) of
apps (in blue) and malware (in red).

for malware by anti-virus software. Hence, owing to this detailed
information, it is a suitable dataset for model deduction.
DS2. Apps crawled by ourselves. We have collected over 2
million apps between Sep 2013 to July 2016 from 25 Android
markets [39]. Among these apps, there are 334,782 malware
samples from 1,149 malware families. For each app, we assess its
creation time, belonging market, and detection result (e.g., whether
it is malware and if so, which family it comes from) by VIRUSTO-
TAL1. Since the detection results for one malware come from 57
integrated commercial anti-virus software in VIRUSTOTAL which
may vary very much, we leverage AVCLASS [40] to identify the
most likely family name. We publish our dataset and more detailed
analysis results at this link [41].

4.1.1 Statistics of Malware

Apps in DS1 are from 16 markets including GOOGLEPLAY,
SLIDEME, APPCHINA, WANDOUJIA, LENOVO, etc. The markets
are evenly distributed in three regions: China, US, and other
countries. DS2 includes GOOGLEPLAY and other 24 famous third
party markets in multiple countries and languages. For example,
16 markets are from China, and 7 markets are from the US. Note
that many markets in DS1 are included in our investigated markets.
The variety of markets facilitates the study of malware spread.

Figure 7 shows the statistics of apps and malware inside these
two datasets. The left figure presents the regional distribution
of app markets to analyze, with both sets both have the largest
number of markets from China. The right figure shows the number
of apps and malware contained in the 25 markets that have been
created during the period from 2008 to 2016. Since our crawled
apps cover a wide range of collection times (2013 to 2016) and
creation times (2008 to 2016), we are able to characterize Android
malware development and spread in general.

Table 2 presents the top 10 markets and malware families
that contain the largest number of Android malware, respectively.
Additionally, we elaborate these markets with their regions and the
day range of malware existing inside, and malware families with
the day range from the day of first detection to the last observation
day in DS2.

4.2 Evaluation of Malware Propagation Model — Pre-
diction for P1

We fit the propagation model using nonlinear least squares and
Bayesian parameter estimation and evaluate it with RSE.

1. http://www.virustotal.com, an online malware scanner
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TABLE 2: Top 10 of markets and families containing the largest number of malware samples in DS2.

No Android Market Malware Family
Name Region Number Day Range Name Number Day Range

1 GOOGLEPLAY U.S. 81,968 2,997 KUGUO 25,002 3,003
2 QQ China 74,265 3,012 AIRPUSH 17,135 2,995
3 ANZHI China 59,550 2,958 DOWGIN 16,818 3,006
4 GETJAR Euro 22,334 2,965 SMSREG 10,737 3,003
5 XIAOMI China 18,257 2,924 SECAPK 9,885 3,003
6 MUMAYI China 16,974 2,934 GAPPUSIN 9,452 3,004
7 EOEMARKET China 11,344 2,937 REVMOB 8,731 2,987
8 HIAPK China 11,083 3,008 LEADBOLT 6,636 2,976
9 APPCHINA China 8,656 2,975 YOUMI 5,919 2,974
10 APK20 U.S. 5,241 2,999 DOMOB 5,718 2,973

TABLE 3: The statistics for two models in Section 4.1: overall malware growth in top 10 markets hosting the most malware; family-
specific malware growth in a specific market with top 10 pairs of {family, market} that contain the most malware.

Market Creation Model Family & Market Growth Model
α β RSE α β γ RSE

GOOGLEPLAY 1.91E+02 2.39E-03 1345 KUGUO & QQ 4.30E+04 1.98E+00 1.52E-03 1839
QQ 3.03E+03 1.27E-03 6535 DOWGIN & ANZHI 1.23E+04 1.58E+00 2.03E-03 487.8
ANZHI 1.78E+03 1.49E-03 2371 AIRPUSH & GETJAR 9.39E+03 1.38E+00 2.10E-03 300.0
GETJAR 1.20E+06 1.25E-03 1476 REVMOB & GOOGLEPLAY 1.06E+04 1.67E+00 2.02E-03 159.1
XIAOMI 8.72E+01 2.39E-03 324.7 AIRPUSH & GOOGLEPLAY 4.09E+04 1.50E+00 8.65E-04 277.4
MUMAYI 1.36E+03 1.09E-03 1335 KUGUO & ANZHI 1.47E+05 1.38E+00 6.72E-04 740.7
EOEMARKET 8.06E+01 2.10E-03 395.3 GAPPUSIN & QQ 5.81E+03 1.79E+00 2.14E-03 228.8
HIAPK 8.56E-01 4.47E-03 497.6 LEADBOLT & GOOGLEPLAY 3.41E+05 8.79E-01 2.40E-04 44.01
APPCHINA 4.04E+01 2.01E-03 321.6 SECAPK & ANZHI 2.25E+04 1.55E+00 9.88E-04 157.8
APK20 2.74E+01 2.14E-03 168.0 DOWGIN & QQ 4.51E+03 1.85E+00 1.79E-03 1839

Creation rate β (Equation 1). We fit β for each of the 25 markets
in DS2. The first 4 columns of Table 3 show the parameters of
the fitted model for the 10 markets with the most malware. The
mean and median RSE values for all 25 markets are 201.0 and
662.5, respectively, which suggests the exponential distribution
provides a good fit for the creation rate in each market. In addition,
we plot the cumulative number of malware apps created for 5
markets in Figure 3. GOOGLE PLAY and ANDROIDDRAWER have
the largest creation rates, while MOB and FREEWARELOVERS

have the least ones. To some extent, it can unveil the popularity
of Android markets to attackers. In particular, the largest app
market GOOGLE PLAY, once being compromised, can lead to
very serious consequences to its users. However, markets like
FREEWARELOVERS rarely appeal to attackers due to its scarce
users. In despite of varying curvatures, these curves have a high
consistence with the data in MCAFEE’s 2016 security report [42].

Removal rate γ (Equation 1). Since only DS1 contains informa-
tion regarding when malware is removed by markets, we evaluate
the removal rate fitting merely on DS1. There are only six markets
and 8,339 samples shared between DS1 and DS2, so we do not
provide an individual removal rate for each market. Instead, we
compute an overall removal rate for Android malware (5.792E-
3 apps per infected app per day). The fitted curve is shown in
Figure 4. It indicates removal rate fitting was highly effective on
the data (RSE=76.4). The removal rate complies with an inverted
sigmoid curve, indicating that malware becomes more impercep-
tible over time. It can imply in reality that market administrators
can receive more either explicit or implicit notifications when a

relatively larger number of malware samples are residing in the
markets, and thereby set about checking and removing them.
Family-specific growth model (Equation 5). The family-specific
malware growth model reveals the markets on which each family
is most successful. We fit the model using DS2, which contains
detailed information on creation dates and malware families. We
identified the top 10 pairs of malware family and market that
contain the most malware, and fit the model on this data. The last
5 columns in Table 3 show the detailed parameters fitted for this
model (mean RSE=439.0). We plot three of them in Figure 6, i.e.,
malware WKLOAD in market QQ, malware DOMOB in market
ANZHI, and malware AIRPUSH in market GETJAR (all these
malware families have at least 1000 samples, and exist for at least
1000 days). As the curves show, the model can simulate the growth
of malware in a specific family accurately. We also compute the
RSE values for all 40 pairs of markets and families that have at
least 1000 samples, of which the mean is 163.3, the median is 79.7,
1st quartile is 42.4, 2nd quartile is 79.7, 3rd quartile is 149.5, and
4th quartile is 1839.

Figure 5 shows the growth curves of five malware families in
market QQ. WKLOAD is more infectious and can reach its peak
in a shorter time, while GAPPUSIN is less infectious with a slow
increase, but can reach a relatively higher peak. This implies that
GAPPUSIN is more likely to evade the security inspection.
Significance. The lifecycle model can benefit the security commu-
nity threefold: 1) predicting the growth (either increase or decline)
of malware and thereby helping to restrain new outbreaks of
malware in its early phase; 2) assessing the resistibility of Android
markets in terms of the growth rate of malware (from Figure 3)
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Fig. 8: Mutual Information between markets. In particular,
the 25 markets are in sequence: GOOLGEPLAY, QQ, ANZHI,
GETJAR, MUMAYI, XIAOMI, APK20, HIAPK, EOEMARKET,
APPCHINA, COOLAPK, APKMIRROR, FLYME, GFAN, CNMO,
BAIDU, ANDROIDDRAWER, WANGYI, ANRUAN, FDROID,
FREEWARELOVERS, MOB, WANDOUJIA, APKPURE, AND CHI-
NAMOBILE

to suggest further improvements in security, and; 3) identifying
family-specific malware growth in a specific market. The variety
of growth rates can facilitate the study of malware categorization
and characteristics as well as the weaknesses of security detection
techniques.

4.3 Mutual Information between Markets

We examine mutual information between the 25 Android markets
in DS2, calculated using ARACNe (see Section 3.2.1). The results
are shown as a matrix in Figure 8, where mutual information is in
the range [0, 1] and cells with a larger value have a lighter color.
The larger mutual information between two markets indicates that
they share more same apps (as well as malware) in between.

We list the top 5 pairs of markets with highest mutual in-
formation value in Table 4 and the top 5 pairs of markets with
lowest mutual information value in Table 5. These results indicate
a relatively large rate of app replicas between the markets based on
the analysis on DS2. The pair with the highest mutual information
is APK20 and GOOGLEPLAY. The reason is that APK20 claims to
have the “Top 100,000 Play Store Apps Available To Download”
in its website, implying that APK20 has crawled a large number of
apps from GOOGLEPLAY. Consequently, malware from GOOGLE-
PLAY is highly likely be transmitted into APK20. The pair with
the lowest mutual information is ANRUAN and FDROID. ANRUAN

is a commercial application repository that employs TENCENT

anti-virus software to detect potential malware, and provides a
variety of Android apps for its users. FDROID is an application
repository hosting thousands of open-source Android apps, which
asks its developers to upload source code for apps. This open
source policy impedes many developers in ANRUAN to share their
commercial products in FDROID. By examining the malware in
these two markets, we found that no malware is shared in between.
Therefore, the mutual information is only 0.2 between these two
markets.
Significance. Behavior 6 in Figure 1 facilitates the formation of
an implicit underlying network amongst markets. This experiment

TABLE 4: Top 5 pairs of markets with the highest correlation.

No Market Pair Correlation
1 {GOOGLEPLAY, APK20} 0.66
2 {GOOGLEPLAY, APPCHINA} 0.64
3 {XIAOMI, EOEMARKET} 0.64
4 {APK20, APPCHINA} 0.62
5 {GFAN, EOEMARKET} 0.62

TABLE 5: Top 5 pairs of markets with the lowest correlation.

No Market Pair Correlation
1 {ANRUAN, FDROID} 0.20
2 {ANRUAN, WANDOUJIA} 0.23
3 {ANRUAN, MUMAYI} 0.23
4 {ANRUAN, GETJAR} 0.24
5 {ANRUAN, CNMO} 0.24

confirms our theory by revealing markets often share a consid-
erable amount of mutual information, and indicates the hidden
topology of the underlying network for these markets. Information
gathered from these results can be used to: 1) study the direction
and velocity of malware spread between markets combining the
growth model within a market. 2) control, or even cut off, the
channels of spread of malware before it is widely spread.

4.4 Malware Spread Prediction between Markets —
Prediction for P2 and P3

As described in Section 3.2, we use an SI model to help us
understand the spread of malware between markets. In this section,
we evaluate our spread model on DS2 from two aspects: the
spread velocity of malware across markets, and the spread order
of malware between markets.

4.4.1 Spread velocity of malware — Prediction for P2
We aim to evaluate our spread model on infection velocity of
malware across markets, i.e., how fast one malware family spreads
to all of the markets. First, we fit a deterministic form of the
model using least squares estimation and then we simulate that
model stochastically, taking into account the mutual information
between markets. Figure 9 shows the spread models for three
malware families—KUGUO, SMSREG, and IGEXIN. The three
families vary in the number of contained malware samples, in par-
ticular, KUGUO has 25,002 samples within the range of [20,000,
∞), SMSREG contains 10,737 samples in the range of [10,000,
20,000), and IGEXIN owns 3,926 samples in the range of [0,
10,000). As shown above, βkuguo=5.810E-3, βsmsreg=4.732E-3,
βigexin=3.189E-3 are the market infection rates per day of these
three families, respectively. To evaluate the performance of the
deterministic model on DS2, we compute the RSE values for 100
families that has the most number of malware. Of all computed
RSE values, the average is 2.24, 1st quartile is 1.23, 2nd quartile
is 2.06, 3rd quartile is 3.15, and 4th quartile is 6.48. The results
show that the deterministic model can closely approximate the real
world data.

In addition, we employ the Pearson correlation coefficient to
quantify and assess the prediction results. For Equation 10, we
feed X with the predicted infection time of markets where xi is
the predicted number of days to infect i markets, and Y with the
actual infection time of markets where yi is the actual number of
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(c) The spread model of malware igexin

Fig. 9: Three samples to illustrate the spread model for a specific malware family. The x axis denotes the number of days since the first
infection, and the y axis denotes the number of infected markets by this malware.

days to infect imarkets. We focus on the top 100 malware families
that exist in all 1,149 Android markets, and plot the distribution
of correlations in Figure 11a. The overall correlations achieve an
average of 0.89 and a median of 0.91. Of these families, there
are 27 families that contain at least 1,000 samples plotted as “≥
1000”, and the remaining 73 families with less 1,000 samples
plotted as “< 1000”. The two sets of families have the very close
mean-median results with 0.89, 0.90 and 0.89, 0.92, respectively.

To some extent, the infection rate of malware reveals its
infectivity and popularity in the lifecycle. Taking the malware
KUGUO and IGEXIN as an example, malware KUGUO has a larger
infection rate than malware IGEXIN, i.e., KUGUO spends less days
to infect all these markets as shown in Figure 9a and 9c. According
to the security reports [43, 44], KUGUO with “High” risk impact
is more aggressive than IGEXIN with “Low” risk impact. Besides
the malicious behaviors of stealing users’ sensitive information
that IGEXIN also contains, KUGUO can carry out a malicious
promotion of other apps for making profits or malware spread.
It leads that KUGUO is more likely to be used by cybercriminals
to achieve their goals. Consequently, KUGUO is observed to have
a faster growth and spread between markets.

4.4.2 Spread order between markets — Prediction for P3
As well as predicting the times at which markets will be infected,
we can also predict the order of infection. By fixing the first five
markets to be infected and simulating infection of the remaining
markets (averaged over 100 trials), we can assess how similar
the predicted order of infection is to the actual data. We use
the Pearson correlation coefficient to quantify and assess the
prediction results. For Equation 10, we feed X with the predicted
infection order of markets by our spread model where xi is the
predicted infection order for i-th market, and Y with the actual
infection order of markets where yi is the actual infection order
for i-th market.

We select the top 100 malware families that present in all
1,149 Android markets, and plot the distribution of correlations in
Figure 11b. The overall correlations achieve an average of 0.66
and a median of 0.70. We also plot the distribution of correlations
for the 27 families that contain at least 1,000 samples (i.e., ≥
1000), and the remaining 73 families with less 1,000 samples (i.e.,
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Fig. 10: The infection order of malware kuguo between markets.
Each bar illustrates its mean and standard deviation of the predic-
tion order for the corresponding market.

< 1000). As shown in Figure 11, the model is more suited to
the families with more samples: the mean and median are 0.74
and 0.76, respectively, in the families with at least 1000 samples,
while they are 0.64 and 0.66, respectively, for the families with less
samples. Specifically, for malware KUGUO, the largest malware
families in DS2, the Pearson correlation coefficient between the
simulated and actual order was 0.801 (a strong correlation) as
shown in Figure 10.

The infection order of markets reveals the dissemination of
malware and the app transmissions between markets (behavior
2, and 6 in Figure 1). The predicted infection order can help
the market administrators prepare in advance to take necessary
measures to prevent the spread of malware.
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Significance. The SI model provides a good representation of
the spread between markets and can be used to predict future
infections. By applying information learned from one family to
simulate infection in others, we show our approach can be used to
make predictions about new malware families.

5 DISCUSSION

This section discusses the applicable areas of our work, and its
limitations.

5.1 Applications
Prediction of malware propagation and spread. Understanding
malware propagation and spread accurately can benefit to both app
markets and Android users. Our models, which portray malware’s
dynamics, can be leveraged by market administrators to predict
the outbreak and proliferation of malware [45]. Endeavors and
resources (e.g., man power) are subsequently designated against
upcoming threats. The prediction results can also make normal
Android users aware of the security risk of installing apps in one
market. As a result, our models along with conclusive insights
can aid in protecting the Android ecosystem, and reducing the
damages caused by malware.
Security assessment for Android markets. Android markets
adopt diverse vetting processes to detect malware among uploaded
apps, and alleviate the damages caused to users. For instance,
Google launched BOUNCER [46] in 2012 to automatically scan
Android apps in Google Paly, and then engaged a team of security
experts to identify the violations of uploaded apps [47] in 2015.
Besides, third-party markets rely on the scanning results of com-
mercial anti-virus software to eliminate malware from markets.
However, the capabilities of these protection mechanisms are not
clear. Therefore, it is desirable to provide a security metric to
evaluate these markets. The curvature of the malware propagation
curve in Section 3.1 shows to some extent the resistance of
Android markets to malware. The higher the curvature is, the
more susceptible the market is to new variants of malware. As
shown in Figure 3, although GOOGLE PLAY is recognized as
one of the most secure Android markets taking rigorous security
inspections to apps, it is still susceptible to new malware due to
its largest number of users in the Android world. Hence, before
applying intensive malware detection (e.g., ICCDETECTOR [48]
and others [22, 49, 50]) on the market side, a security assessment
with our approach is desired.
Facilitate the understanding of malware. The propagation of
Android malware within a market varies from the belonged mal-
ware families. Our overall malware propagation model can reveal
at least two sorts of malware characteristics: aggressiveness of
malware, i.e., how much harm the malware can cause. In general,
more aggressive malware can cause more severe damages and loss;
the evasiveness of malware, i.e., how likely the malware can evade
the detection of anti-virus software. There exist many techniques
to prevent the detection, such as obfuscation [51, 52], dynamic
code loading and execution [53], and app packing [54].

5.2 Limitations
Family labeling accuracy. In this paper, we propose a family-
specific growth model and spread model between markets. There-
fore, the fitness of models to some extent, relies on the accuracy
of family labeling of Android malware. Given one malware

(a) Infection Time (b) Infection Order

Fig. 11: Performance measurement for infection time and order
prediction. “Overall” depicts the quartile for the top 100 malware
families, “≥1000” for the 27 malware families with more than, or
equal to, 1000 samples, and “<1000” for the 63 malware families
with less than 1000 samples.

samples, off-the-shelf anti-virus software probably reports dif-
ferent family names. Therefore, AVCLASS is used to normalize
malware families in our study. Although its evaluated precision
is high with 87.2%-95.3%, there are some cases in which it is
incapable to differentiate family version, and it introduces noise
and disturbance into the model and causes inaccuracies that are
hard to measure. Moreover, finer-grained family labels necessitate
manual confirmation in most cases [55, 56]. We have alleviated
this problem by focusing on markets and families that have a
large number of samples, so as to minimize the inaccuracy of
mis-labeling a small number of samples.

Insufficiency of removal data. We used the data in ANDRADAR

to construct our removal model. ANDRADAR tracked more than
1,500 app deletions across 16 markets over a period of three
months. However, it has only 6 markets in common with the
data we collected, and a duration of three months, which is not
long in the active life of Android apps since 2008. Therefore, the
removal data may lack generality which would cause inaccuracy
of the extracted model. However, this drawback could be mitigated
by collecting more removal data in more popular markets with a
longer duration.

Assumption validity in the model. We have minimized the
limitations of our model as far as possible. The first (simple)
version of the model we evaluated did not take into account
heterogeneities in behaviour between different families of malware
- hence we proposed a family-specific growth model. However,
this version of the model still assumes the “law of mass action”
[57], i.e., the rate at which infections occur is directly proportional
to the number of malware-infected apps. Whilst this is true in the
asymptotic sense (i.e. over an infinite number of trials), the actual
result may be a little different. To address this, we extended our
model to consider how app markets are connected in terms of
the spread of malware, and simulated the distribution of possible
infection events using a stochastic model. By applying a stochastic
model, we acknowledge it is impossible to perfectly predict the
order and frequency at which malware will spread between app
markets (due to the inherent randomness of malware growth).
However, we are able to show with considerable accuracy, how
likely different infection scenarios are to occur.

11



6 RELATED WORK

In this section, we summarize relevant research works that model
the propagation and spread behaviors for (Android) malware, and
discuss the differences with our work.

Epidemic Model characterises the spreading features of mal-
ware. Thommes and Coates [58] propose a deterministic epidemic
model for a P2P virus that facilitates protection from viruses.
Kang and Prakash [23, 59] propose an ESM model to present
the infection pattern of malware across 1.4 million hosts. Zou et
al. [60] and Liu et al. [24] leverage the epidemic model to simulate
and model the propagation of Internet email worm and malware,
respectively. In this study, Epidemic Model (EM) is also applied
to model the between-market malware spread. However, our study
is not a simple application of EM or fitting the model with the
data. We consider the within-market propagation and incorporate
EM with the connection between markets (the mutual information
among them). It is a crucial difference with these studies that we
consider the mobility of apps between Android markets, i.e., the
mutual information in Section 3.2.

Markov Chains are widely used to model the spreading char-
acteristics of malware in networks. Garetto et al. [12] present a
modelling methodology based on Interactive Markov Chains that
can capture the impact of the underlying topology on the spreading
characteristics of malware. Mieghem and Omic [61, 62] employ
N -intertwined Markov Chains to depict the transition of viruses
in networks. Chen and Ji [63] derive a spatial-temporal random
process by combing an independent model and a Markov model
to identify the statistical dependence of malware propagation.
In the dataset of malware samples, since we have no actual
correlation probabilities among markets, for any app (no matter
benign or malicious) on a certain market, there is no way to test the
probabilities that it will be transited to the other markets. Simply
put, without the mobility factors or topology among markets, it
is extremely hard to model the between-market propagation with
Markov chains.

Information Diffusion is a field encompassing technique for
social media mining [64]. Yang and Leskovec [65] develop a linear
influence model to depict the spread of information via social
media. Information diffusion models the phenomena in which an
idea or behavior gets popular due to the influence of others. It has
also been applied to establish a spread model for malware [23],
which considers the malware as the information that is spread
among networks (e.g., social networks). In this study, information
diffusion is not adopted, as the topology of and mobility factors
between markets are not explicitly known. Instead, the mutual
information among markets is calculated to serve as the potential
connection between any two markets.

Recently, there have been some studies on Android malware
spread. Yu et al. [15] formulate the problem of malware prop-
agation as a network, and establish a two-layer epidemic model
from network to network. They report several distributions of
given malware in different stages of malware growth. However,
this study uses an obsolete dataset MALGENOME [2] collected
from 2010 to 2011, which cannot characterize the spread of the
latest malware. Peng et al. [5] summarize several Susceptible-
Infected (SI) models as well as existing problems. They suggest
that a social network and human behavior are critical components
to resolve the malware spread modelling problem. Hence, Yu et
al. [15] and Peng et al. [5] apply SI models to depict the malware
propagation among end devices in mobile networks. In other

words, these two studies do not provide information on the market-
oriented propagation.

In this study, we propose an approach based on an epidemic
model, as the network topology among market servers is unclear
and social media data is not available. Different from previous
study [15], we focus on factors of malware spread within and
between Android markets, rather than network topology. Inspired
by GLEaM (Global Epidemic and Mobility Modeler) [66] and
[5], malware spread can be affected by the mobility of apps
between different Android markets. Therefore, we first investigate
the mutual information among markets, and then build a spread
model based on the mutual information.

7 CONCLUSION

In this paper, we conducted the first attempt to explore the
mechanism of malware propagation and spread. Based on the un-
derstanding, we studied the spread of Android malware within and
between markets from a huge number of Android apps infected
with malware, and proposed comprehensive models to simulate
the spread behavior of Android malware. The model benefits
the prediction of Android malware, and is able to warn markets
when to take security measures to resist to emerging malware. We
carried out a comprehensive experiment to evaluate our proposed
models. The results show that our models can provide robust and
accurate predictions for the outbreak of Android malware and the
propagation between different markets.

We believe that our work contributes significantly to the
security community on malware prevention and prediction by
studying its characteristics and trends of increase and spread.
In addition, we envision that more works can be conducted to
further describe the dynamics of Android malware in future. For
example, similar with the cyclical contagions of an infectious
disease [67], Android malware may also present a periodical
increase in its lifecycle due to the emergence of new malware
variants and the upgrade of detection techniques. This study can
unveil the underground industry of Android malware, and evaluate
the resistance of detection techniques to these variants.
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8 APPENDIX

8.1 Security Protocols of Android Markets

To further evaluate our experimental results and verify the con-
clusions drawn from the analysis, we investigated the security
protocols employed by different Android markets. In particular,
we demystify the processes of app uploading (related to behavior
1, 2, 6), removal (related to behavior 5), and backend engines for
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malware detection (related to behavior 3, 4). All the investigation
results are presented at Table 6.
App Uploading. Authorized developers are allowed to upload
Android apps into markets. In terms of security concerns, different
markets have adopted varying regulations and restrictions for
developers. The restrictions can be categorized into three levels
from low to high: free level does not impose any restrictions to
developers or attackers, which means anyone can upload anything
into the markets. Markets like GERJAR and FREEWARELOVERS

have relied on this restriction; verification level only allows au-
thorized developers to upload apps. For example, most of markets
located in China (e.g., ANZHI, MUMAYI and APPCHINA) forces
developers to provide valid and lawful certifications. Generally,
individual developers have to provide their identity cards (some-
times one photography is mandatory in which the developer
without nothing covering face needs to hold his/her identity card).
Enterprise developers have to provide the details of the legal
person of the company as well as the business licenses acquired
from the local government. In such case, it raises the difficulties
of attackers circulating malware stealthily. Specifically, GOOGLE

PLAY necessitates a bank card bound to the developer account. In
addition, Safety Copyright Service Platform2 is an official agent
for mobile applications providing a unified certification service.
Developers who obtain certifications from it can upload apps into
many partner markets such as APPCHINA, GFAN and Mumayi;
prohibition level does not receive apps from developers. Instead,
editors or administrators of markets put apps on the shelves them-
selves. For example, markets APK20 and MOB duplicate apps in
GOOGLE PLAY or other markets. Markets ANDROIDDRAWER and
APKPURE accept requests of developers publishing their products
which are already existing in GOOGLE PLAY, whereas all apps are
selected and thereby published by market editors.
App Removal. Apps are prone to being compulsively removed
upon violating the regulations of markets. Generally, the reg-
ulations stems from four aspects: the quality of apps cannot
meet the requirements, such as recurring crashes, low-resolution
images and unresponsive GUIs; apps contains malicious code for
example privacy harvesting, privilege escalation, and aggressive
advertising; apps contain illegal content that violates the local
laws or copyrights of specific works. On the other hand, some
markets allow developers to withdraw their apps following a pre-
designed procedure. Although malware may be removed because
of other reasons (e.g., low quality or violation of laws) rather than
its maliciousness. In this study, we avoid to model the affect of
each factor on app removal, but approximate the removal ratio of
one malware sample in a specific market statistically.
Security Checking. In our investigation, most of markets have
employed their own security inspection. For example, GOOGLE

PLAY has equipped with one comprehensive and scalable built-
in malware detection system that reduces the ratio of potential
harmful apps considerably. Even though, few of malicious apps
can still impact millions of Android users [68]. In addition, the
app scanning engine periodically checks on-the-shelf apps in case
of misses. Some markets resort to specialized anvi-virus engines
for malware detection. For example, market EOEMARKET relies
on four anti-virus engines: 360 Safeguard, Anguanjia, Tencent
and KingSoft Antivirus, while MUMAYI relies on 360 Safeguard
and Tencent. In addition, we found that markets GETJAR and
FREEWARELOVERS do not have explicit security scanning en-

2. http://www.safebq.com/

gines running behind. Markets APK20, ANDROIDDRAWER and
APKPURE presumably overlook additional security check for the
apps which are from GOOGLE PLAY. It is worthy mentioning
that a number of Chinese Android markets ask developers to
get trustworthy certificates for their products from two official
agents — China National App Administration Center (CNAAC)3,
ANVA White List4. CNAAC issues a trustworthy certificate for
each app that passes security test, and ANVA certifies benign apps
according to detection results by security vendors.
Remark. This investigation has explored all behaviors occurring
amongst developers, attackers, and app markets. It serves as an
important evidence for the correctness of Figure 1. More specif-
ically, developers and attackers can upload apps or malware into
markets conforming to the regulations of target markets (behaviors
1, 2). The market editors can also transfer some apps from other
markets into their own (e.g., APK20 and ANDROIDDRAWER),
which confirms the existence of behavior 6. Moreover, markets
commonly adopt security detection techniques to identify malware
(behaviors 3, 4) and subsequently get rid of them (behavior 5).

3. http://www.cnaac.org.cn/
4. https://white.anva.org.cn/
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TABLE 6: All markets to study in DS2.

Market Website Region App Uploading App Removal Security Checking

GOOGLEPLAY https://play.google.com/store?hl=en US developer (card)2 owner8, editor Built-in system
QQ http://sj.qq.com/myapp CN developer (id)3 owner (request)9, editor AV (Tencent)10, human11

ANZHI http://anzhi.com CN developer (id), editor 4 owner (request), editor AV(Tencent, 360, KingSoft, etc)
GETJAR http://www.getjar.com LT developer owner, editor –
MUMAYI http://www.mumayi.com CN developer (safebq)5 owner(request), editor AV(360, Tencent)
XIAOMI http://app.mi.com CN developer (id) owner(request), editor AV, human
APK20 http://www.apk20.com US editor (markets)6 owner (request), editor AV
HIAPK5 http://www.hiapk.com CN – – –
EOEMARKET http://www.eoemarket.com CN devloper (id), editor owner (request), editor AV (360, Anguanjia, Tencent, KingSoft)
APPCHINA http://www.appchina.com CN developer (safebq) owner (request), editor ANVA White List12, CNAAC13

COOLAPK http://coolapk.com CN developer (id) – –
APKMIRROR http://www.apkmirror.com US editor, developer editor signature protection14

FLYME http://app.flyme.cn CN developer (id) owner (request) AV (AVL Mobile Security, etc)
GFAN http://apk.gfan.com CN developer (safebq) owner (request), editor AV (360, Tencent, LBE)
CNMO http://app.cnmo.com/ CN – – –
BAIDU http://shouji.baidu.com CN developer (id) owner (request), editor ANVA White List
ANDROIDDRAWER http://www.androiddrawer.com –1 editor (google play)7 editor –
WANGYI http://m.163.com/android/index.html CN – – –
FDROID https:/f-droid.org US developer – –
FREEWARELOVERS http://www.freewarelovers.com/android DE developer – –
MOB http://mob.org US developer, editor (google play) – –
WANDOUJIA http://www.wandoujia.com/apps CN developer (id) owner (request), editor AVNA White List
APKPURE https://apkpure.com US developer, editor (google play) editor signature protection
CHINAMOBILE http://mm.10086.cn CN developer (id) owner (request), editor AVNA White list
1 –: not available;
2 developer (card): developers have to be verified by providing a valid bank;
3 developer (id): individual developers are verified by identity card, and corporate developers verified by business license and legal person;
4 editor: the editors of market;
5 developer (safebq): developers that are verified by Safety Copyright Service Platform;
6 editor (markets): the editors download apps from other markets;
7 editor (google play): the editors fetch apps from GOOGLE PLAY;
8 owner: the owner of the app;
9 owner (request): the owner of the app has to send a request for the withdrawal;
10 AV (*): Apps undergo the detection by anti-virus software;
11 human: Apps undergo human inspection;
12 ANVA White List: Apps have to be evaluated in the ANVA white list;
13 CNAAC: Apps have to be verified in China National App Administration Center;
14 signature protection: apps that are verified by its cryptographic signature;
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