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Abstract—Security vulnerability prediction (SVP) can identify
potential vulnerable modules in advance and then help develop-
ers to allocate most of the test resources to these modules. To
evaluate the performance of different SVP methods, we should
take the security audit and code inspection into account and then
consider effort-aware performance measures (such as ACC and
Popt). However, to the best of our knowledge, the effectiveness
of different SVP methods has not been thoroughly investigated in
terms of effort-aware performance measures. In this article, we
consider 48 different SVP methods, of which 36 are supervised
methods and 12 are unsupervised methods. For the supervised
methods, we consider 34 software-metric-based methods and two
text-mining-based methods. For the software-metric-based meth-
ods, in addition to a large number of classification methods, we also
consider four state-of-the-art methods (i.e., EALR, OneWay, CBS,
and MULTI) proposed in recent effort-aware just-in-time defect
prediction studies. For text-mining-based methods, we consider the
Bag-of-Word model and the term-frequency-inverse-document-
frequency model. For the unsupervised methods, all the modules
are ranked in the ascendent order based on a specific metric. Since
12 software metrics are considered when measuring extracted mod-
ules, there are 12 different unsupervised methods. To the best of our
knowledge, over 40 SVP methods have not been considered in pre-
vious SVP studies. In our large-scale empirical studies, we use three
real open-source web applications written in PHP as benchmark.
These three web applications include 3466 modules and 223 vul-
nerabilities in total. We evaluate these SVP methods both in the
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within-project SVP scenario and the cross-project SVP scenario.
Empirical results show that two unsupervised methods [i.e., lines
of code (LOC) and Halstead’s volume (HV)] and four recently pro-
posed state-of-the-art supervised methods (i.e., MULTI, OneWay,
CBS, and EALR) can achieve better performance than the other
methods in terms of effort-aware performance measures. Then, we
analyze the reasons why these six methods can achieve better per-
formance. For example, when using 20% of the entire efforts, we
find that these six methods always require more modules to be in-
spected, especially for unsupervised methods LOC and HV. Finally,
from the view of practical vulnerability localization, we find that all
the unsupervised methods and the OneWay method have high false
alarms before finding the first vulnerable module. This may have
an impact on developers’ confidence and tolerance, and supervised
methods (especially MULTI and text-mining-based methods) are
preferred.

Index Terms—Effort-aware performance measures, security vul-
nerability prediction (SVP), software metric, supervised method,
text mining, unsupervised method.

I. INTRODUCTION

THE vast number of security vulnerabilities are reported
each year, and security vulnerabilities have imposed sig-

nificant damages to individuals and companies. Compared with
software defects, the number of vulnerabilities in the soft-
ware project is far less than the number of software defects.
Meanwhile, finding security vulnerabilities requires a deep un-
derstanding of both the software and the attacker’s mindset
[1]. Moreover, security vulnerabilities provide opportunities for
hackers, who often keep their knowledge of vulnerabilities se-
cret and can commit the criminal activities in some cases. Due to
highly negative impact of security vulnerabilities, different ap-
proaches of security vulnerability analysis and discovery have
been proposed by researchers from the academic community and
the industrial community [2]. Except for traditional approaches
(such as static analysis, dynamic analysis, and hybrid analysis)
[3], approaches using machine learning are popular in current
security vulnerability analysis and discovery and have received
increasing interests [4].

Motivated by the studies of software defect prediction (SDP)
[5], [6], security vulnerability prediction (SVP) constructs mod-
els with machine learning to identify potential vulnerable pro-
gram modules [7]. In particular, SVP extracts and labels modules
by mining software historical repositories, such as version con-
trol systems and bug tracking systems. The granularity of the
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module can be set as file, class, or binary component, as needed.
Then, it uses metrics to measure these extracted modules. Most
of metrics are inspired by the SDP domain, such as code com-
plexity and project development characteristics. Finally, it uses
a specific classification method (such as random forest) to
train a model. For a new module, we can then leverage this
trained model to predict whether this module is vulnerable or
nonvulnerable.

Since locating vulnerabilities should take into account cost
effectiveness of SVP models, in this article, we consider effort-
aware performance measures (i.e., Popt and ACC). To the best
of our knowledge, this is the first paper to compare the per-
formance for a large number of SVP methods. In particular,
we consider 48 different SVP methods. Among these methods,
36 methods are supervised methods and 12 methods are un-
supervised methods. For the supervised methods, we consider
34 methods based on software metrics and two methods based
on text mining. For the supervised methods based on software
metrics, we first consider a large number of traditional classifi-
cation methods, which are used in the previous empirical study
to revisit their impact on the performance of traditional SDP
[8]. Then, we include four state-of-the-art methods proposed in
recent effort-aware just-in-time software defect prediction (JIT-
SDP) studies. These four methods are EALR [9], OneWay [10],
CBS [11], and MULTI [12]. For the supervised methods based
on text mining, we not only consider a method based on the
Bag-of-Word (BOW) model [13], but also consider a method
based on the term-frequency-inverse-document-frequency (TF-
IDF) model. For the unsupervised methods, all the modules are
ranked in the ascendent order based a specific metric. Since 12
software metrics are considered when measuring extracted mod-
ules, there are 12 different unsupervised methods. To the best of
our knowledge, for these SVP methods, over 40 methods have
not been investigated in previous SVP studies.

In our large-scale empirical studies, we choose three real
open-source web applications (i.e., Drupal, PHPMyAdmin, and
Moodle) as our experimental subjects. These three web appli-
cations include 3466 modules and 223 vulnerabilities in total.
To evaluate the performance of different SVP methods, we con-
sider two common model evaluation scenarios: within-project
SVP scenario and cross-project SVP scenario [4]. Empirical re-
sults show that two unsupervised methods (i.e., LOC and HV)
and recently proposed four state-of-the-art supervised methods
(i.e., MULTI, OneWay, CBS, and EALR) can achieve better per-
formance than the other methods (including text-mining-based
methods) in terms of effort-aware performance measures.

However, when analyzing proportion of modules inspected
assuming only using 20% of the entire efforts (i.e., PMI@20%
measure), we find that these methods always need to inspect
more modules, especially for unsupervised methods. This find-
ing illustrate why these methods can achieve better performance
when considering effort-aware performance measures. More-
over, when considering the initial false alarms (nonvulnerable
modules are misclassified as vulnerable modules) encountered
before finding the first vulnerable module (i.e., IFA measure),
we find that almost all the unsupervised methods have high
false alarms. Therefore, this may have an impact on developers’

confidence and tolerance, and supervised methods are preferred,
especially for MULTI and text-mining-based methods.

The main contributions of this article can be summarized as
follows:

1) To the best of our knowledge, this is the first paper to in-
vestigate a large number of SVP methods, including 36
supervised methods and 12 unsupervised methods. More
than 30 supervised methods and all the unsupervised meth-
ods have not been considered in previous SVP studies.

2) Large-scale empirical studies are conducted on three real
open-source web applications written in PHP. Final re-
sults based on effort-aware performance measures show
that two unsupervised methods (i.e., LOC and NV) and
recently proposed four supervised methods (i.e., MULTI,
OneWay, CBS, and EALR) have competitiveness both in
the within-project SVP scenario and in the cross-project
SVP scenario.

3) We also compare these SVP methods from proportion of
modules inspected when using 20% of the entire efforts
and the initial false alarms encountered before finding the
first vulnerable modules. Final results can demonstrate
why unsupervised methods can have betterACC andPopt

values. Moreover, these findings can provide guidelines to
effectively use these SVP methods for vulnerability local-
ization in practice.

The rest of this article is organized as follows. Section II in-
troduces background of SVP and related work for our study.
Section III shows methodology, including experimental sub-
jects, all the considered supervised methods and unsupervised
methods, performance measures, and the experimental setup.
Section IV performs result analysis. Section V gives some dis-
cussions. Section VI analyzes threats to validity for our empirical
studies. Section VII concludes this article.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the background of SVP.
Then, we summarize previous studies for SVP. Since our work
is motivated by the recent debates between supervised methods
and unsupervised methods in the SDP domain, we review these
studies in the last subsection.

A. Background of SVP

Software quality assurance teams often have limited resources
for security audit and code inspection. Moreover, detecting and
mitigating security vulnerabilities require manual analysis by
experts who need to be trained with a security mindset [1].
Similar to SDP [5], [6], SVP resorts to machine learning and
aims to identify vulnerable modules in advance. Therefore, the
allocation of test resources can be optimized, and more secu-
rity vulnerabilities can be detected and mitigated as soon as
possible.

The brief process of SVP can be summarized as follows [13].
SVP first extracts program modules from software historical
repositories, such as version control systems and bug tracking
systems. The granularity of modules can be set as source code
file, object-oriented class, and binary component, as needed.
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Then, it uses metrics to measure these modules and labels these
modules by analyzing commit message and bug reports. Most
of the metrics are inspired by the SDP domain and are designed
based on the analysis of code complexity, project development
characteristics, or text mining. Moreover, these metrics can be
easily measured in large-scale software projects. Finally, it uses
a specific classification method (such as random forest) to train
a model based on gathered SVP datasets. For a new program
module, we can use the trained model to predict whether this
module is vulnerable or nonvulnerable.

According to the above description, we can find that the SVP
model construction process is similar to SDP [5], [6]. Vulnera-
bilities and defects are similar in that both vulnerabilities and de-
fects can be caused by human mistakes during the development
process. These mistakes may be related to the code complexity,
the developer experience, or the development process. There-
fore, metrics used for the SDP domain can be directly used to
construct SVP models. Empirical results of previous studies (in-
troduced in Section II-B) showed the feasibility of this solution.
However, different from defects, vulnerabilities are instances
of errors in the specification, development, or configuration of
software such that their executions can violate implicit or ex-
plicit security policies. Therefore, the characteristic of vulner-
able modules should have certain differences when compared
with defective modules. This requires researchers to design spe-
cific metrics to measure vulnerable modules, and this problem
has not been thoroughly studied. Moreover, the number of vul-
nerable modules is far less than the number of defective modules
[7]. Therefore, the problem of class imbalance in SVP is more
challenging than SDP.

B. Related Work of SVP

Based on the background analysis for SVP, we can find that
SVP uses machine learning to identify potential vulnerable mod-
ules and does not incorporate program analysis methods [4].
Therefore, most of the SVP studies are mainly motivated by the
previous studies on SDP.

Zimmermann et al. [7] first investigated the possibility of
SVP by considering traditional metrics (such as complexity,
code churn, dependence measures, and organizational structure
of the company) used in SDP. Based on a commercial project
(i.e., Windows Vista), they found that the traditional metrics
have statistically significant correlation with the number of vul-
nerabilities by using Spearman’s rank correlation. However, the
effect of the correlation is small. They then use Logistic regres-
sion to evaluate the prediction performance. They found that the
trained models have good precision values but low recall values.

Meneely and Williams [14] analyzed the relationship between
developer-activity-based metrics and vulnerabilities. Based on
three open-source projects (the Linux kernel, the PHP program-
ming language, and the Wireshark network protocol analyzer),
they found that the correlations exist. However, the correlations
vary and are not very strong. They also evaluated the prediction
performance of these metrics by using the Bayesian network.
However, the performance based on precision and recall is also
not satisfactory.

Shin et al. [15] also investigated the possibility of SVP by
considering traditional metrics (complexity, code churn, and de-
veloper activity). Final results showed that the trained models
can predict 70.8% vulnerabilities by inspecting only 10.9% files
of Firefox web browser and predict 68.8% vulnerabilities by in-
specting only 3.0% files of Red Hat Linux kernel. Later, Shin and
Williams [16] investigated whether SDP models can be used to
predict vulnerabilities. Their empirical results showed that SDP
models can be used to predict vulnerabilities. However, false
positives of these models need to be reduced while retaining
high recall values. Russell et al. [17] utilized deep learning to
lean feature directly from source code, and empirical results
showed that deep feature representation learning is a promising
method.

Walden et al. [13] compared the performance between
software-metric-based SVP methods and text-mining-based
SVP methods [18], [19]. To conduct empirical studies, they
analyzed three large-scale open-source projects (i.e., Drupal,
Moodle, and PhpMyAdmin) and shared these datasets to facil-
itate the follow-up studies. They found that text-mining-based
methods can have better recall values. Based on their shared
datasets, Zhang et al. [20] proposed the VULPREDICTOR
method to improve the prediction performance. In particular,
they first built six base classifiers based on software metrics or
text mining. Then, they constructed a metaclassifier to process
the outputs of six base classifiers. Empirical results showed
the effectiveness of their proposed method. Tang et al. [21]
considered code inspection cost and proposed effort-aware per-
formance measures to evaluate SVP methods. Empirical results
showed that both in effort-aware ranking-based measures and
effort-aware classification-based measures, text-mining-based
methods had similar performance with software-metric-based
methods. Recently, Stuckman et al. [22] investigated the effect
of dimensionality reduction methods for SVP. They considered
two kinds of dimensionality reduction methods: feature selec-
tion methods and feature synthesis methods. They found that
using dimensionality reduction can narrow the performance gap
between text-mining-based methods and software-metric-based
methods.

Based on datasets shared by Walden et al. [13], this is the first
paper to systematically investigate the performance of a large
number of SVP methods, including 36 supervised methods and
12 unsupervised methods. The performance of these methods
is evaluated by effort-aware performance measures (i.e., ACC
and Popt), and the performance of these methods is compared
in two different scenarios: the within-project SVP scenario and
the cross-project SVP scenario.

C. Debates on Supervised Methods Versus Unsupervised
Methods

The debates on the performance comparison between super-
vised methods and unsupervised methods still derive no conclu-
sion in current SDP research. In previous SDP studies, most of
the proposed methods are based on supervised methods [5]. The
high performance of these methods depends on the high-quality
SDP dataset. However, high-quality SDP datasets often need
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high cost to extract and label program modules, and noises in
SDP databases are inevitable [23], [24]. On the contrary, unsu-
pervised methods do not need any training data and can scale to
large-scale projects. These characteristics can help to apply SDP
models to the industry [25], [26]. The above advantages of un-
supervised methods have attracted more and more researchers’
attention [27], [28]. Moreover, a recent study showed that sim-
ple unsupervised methods can be easily applied to improve the
performance of regression testing [29].

For effort-aware JIT-SDP [9], [30], [31], for which the gran-
ularity of modules is set as code change, Yang et al. [32] found
that some simple unsupervised methods can achieve better per-
formance compared to supervised methods (including the EALR
method proposed by Kamei et al. [9]). Their study has trig-
gered heated discussions. Fu and Menzies [10] revisited empir-
ical studies of Yang et al. [32], and they found that not all the
unsupervised methods can achieve better results than supervised
methods. Therefore, they proposed the OneWay method, which
can select the best unsupervised method automatically based on
training data. Huang et al. [11] later found that given the same
test effort, supervised methods often need to inspect more code
changes and, therefore, can achieve better performance. Liu et al.
[33] proposed a new code-churn-based unsupervised method,
which can achieve better performance than unsupervised meth-
ods proposed by Yang et al. [32]. Chen et al. [12] proposed a
multiobjective-optimization-based supervised method MULTI
and found that this method performed better than state-of-the-
art JIT-SDP methods. Therefore, they confirmed that supervised
methods are still promising in effort-aware JIT-SDP. Yan et al.
[34] compared supervised methods and unsupervised methods
in file-level software defect prediction (FL-SDP), and they found
similar results found in effort-aware JIT-SDP studies. Recently,
Zhou et al. [35] performed large-scale empirical studies by com-
paring two simple unsupervised methods (i.e., ManualDown and
ManualUp) with previous cross-project defect prediction meth-
ods. Based on empirical studies, they recommended that fu-
ture studies should consider ManualDown and ManualUp as the
baseline methods.

However, for SVP, we do not find any studies investigating
the performance of unsupervised methods. Moreover, this is
the first paper that systematically compares unsupervised meth-
ods with many state-of-the-art supervised methods, which are
widely used in effort-aware JIT-SDP [10], [11], [32] and FL-
SDP [34] studies.

III. METHODOLOGY

In our large-scale empirical studies, we want to answer the
following two research questions.

RQ1: How are performance comparison results among all our
considered methods in the within-project SVP scenario in terms
of effort-aware performance measures?

RQ2: How are performance comparison results among all our
considered methods in the cross-project SVP scenario in terms
of effort-aware performance measures?

For these two RQs, we consider two different SVP scenar-
ios, and the introduction of these two scenarios can be found
in Section III-E. To evaluate the performance of different SVP

methods, we only focus on effort-aware performance measures,
which will be illustrated in Section III-D.

In the rest of this section, we first introduce experimental sub-
jects used in our empirical studies. Then, we introduce all the
supervised methods and unsupervised methods in detail. Later,
we illustrate the motivation of using effort-aware performance
measures and their corresponding meanings. Finally, we give the
detail of experiment setup, including data preprocessing meth-
ods, model evaluation scenarios, and statistical analysis methods
used for method comparison.

A. Experimental Subjects

In our empirical studies, we consider three real open-source
web applications written in PHP programming language. The
selected web applications are Drupal, Moodel, and PHPMyAd-
min. Here, Drupal is a widely used content management system,
Moodle is an open-source learning management system, and PH-
PMyAdmin is a web-based management tool for the MySQL
database. These web applications are widely used in previous
SVP studies [13], [20]–[22].

In these web applications, the granularity of the extracted
modules is set as file. These three web applications include 3466
modules and 223 vulnerabilities in total. The detected vulnera-
bilities include code injection vulnerabilities, cross-site request
forgery vulnerabilities, cross-site scripting vulnerabilities, and
path disclosure vulnerabilities. These vulnerabilities are identi-
fied based on the vendor of common vulnerabilities and expo-
sures or analysis on code commits and bug reports.

Extracted modules from these applications are measured in
two ways. One way uses traditional software metrics inspired by
traditional SDP. Another way uses text mining to extract term
vectors, and the details of this way can be found in Section III-B.

For the first way, 12 metrics are considered [13]. The metric
name, metric abbreviation (i.e., corresponding metric name in
Weka arff file), and the introduction can be found in Table I.

The characteristics of these datasets can be found in Table II,
including the dataset name, the number of extracted modules,
the number (percentage) of vulnerable modules, and the number
of text features (terms) after text mining.

B. Supervised Methods

In this subsection, we introduce all the 36 supervised
methods we consider. Here, 34 supervised methods are
software-metric-based methods, and the remaining two ones are
text-mining-based methods.

1) Software-Metric-Based Methods: For software-metric-
based methods, previous studies only considered some classi-
fication methods. For example, Walden et al. only considered
random forest method [13], [22]. Tang et al. considered both
random forest and Naive Bayes methods [21]. Zhang et al. con-
sidered random forest, Naive Bayes, and decision tree as base
classifiers and then used ensemble learning to further improve
the prediction performance [20]. In our empirical studies, we
first consider a large number of classification methods consid-
ered in previous effort-aware JIT-SDP studies [10]–[12], [32].
Moreover, most of these methods are also used in the previous
empirical study to revisit their impact on the performance of
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TABLE I
TRADITIONAL METRICS USED FOR MEASURING EXTRACTED MODULES

TABLE II
CHARACTERISTICS OF DATASETS

traditional SDP [8]. These classification methods and their ab-
breviations are summarized in Table III. From Table III, these
methods can be briefly classified into six families. In particu-
lar, function family includes three methods: SL, RBFNet, and
SMO. Lazy family includes one method: Ibk. Rule family in-
cludes two methods: Jrip and Ridor. Bayes family includes one
method: NB. Tree family includes three methods: J48, LMT, and
RF. Ensemble family considers four different ensemble learning
methods: BG, AB, RF, and RS. In the abbreviations of the En-
semble family, BG+LMT means that this method uses LMT as
the base classifier and uses Bagging as the ensemble method.
It is not hard to find that these methods can cover different
types of traditional supervised methods in machine learning.
In our empirical studies, we also consider the same parameters
setting used by Yang et al. [32] to perform these supervised
methods.

For software-metric-based methods, we further consider four
state-of-the-art methods (i.e., EALR [9], OneWay [10], CBS
[11], and MULTI [12]) proposed in recent effort-aware JIT-SDP
studies. For JIT-SDP, these methods are used to predict defective
code changes, and for SVP, these methods should be used to
predict vulnerable modules. We illustrate these methods in the
context of SVP.

The EALR method is a customized method proposed by
Kamei et al. [9]. Empirical results on JIT-SDP [9] showed
that EALR can detect 35% defective code changes when using
20% of the effort. For SVP, this method uses vulnerable(mi)/
LOC(mi) as the dependent variable. Here, vulnerable(mi) is 1
if the module mi is vulnerable; otherwise, vulnerable(mi) is 0.
LOC(mi) denotes the LOC metric value of mi. Then, it uses
linear regression to construct the models.

The OneWay method [10] is a simple supervised method
based on unsupervised methods proposed by Yang et al. [32].
This method identifies the best unsupervised method based on
the analysis of the training data and then applies this best unsu-
pervised method to the testing data. Empirical results on JIT-SDP
showed that OneWay has competitive performance, and it per-
forms better than most unsupervised methods [32]. For SVP, the
OneWay method aims to identify the best unsupervised method
from 12 unsupervised methods based on the training data.

The CBS method [11] is also a simple but improved super-
vised method. Empirical results on JIT-SDP [11] showed that
CBS achieved better than EALR [9] and achieved similar re-
sults with Yang et al.’s unsupervised methods [32] and OneWay
[10]. For SVP, this method first builds a logistic-regression-
based classifier to identify vulnerable modules. Then, it sorts
the identified vulnerable modules in the ascending order by their
inspection cost based on the LOC metric.

The MULTI method [12] is a multiobjective-optimization-
based supervised method. Empirical results on JIT-SDP showed
that MULTI can perform significantly better than all of the
state-of-the-art methods [10], [32]. For SVP, MULTI formalizes
SVP as a multiobjective optimization problem. One objective
is designed to maximize the number of identified vulnerable
modules, and another object is designed to minimize the inspec-
tion costs. There exists an obvious conflict between these two
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TABLE III
OVERVIEW OF THE METRIC-BASED SUPERVISED METHODS USING TRADITIONAL MACHINE LEARNING METHODS

objectives. MULTI uses logistic regression to build the models
and uses NSGA-II [36] to generate a set of nondominated so-
lutions (i.e., Pareto front), of which each solution denotes the
coefficient vector of logistic regression. In this article, due to
randomness variation inherent from MULTI, we perform ten in-
dependent runs to get a higher statistical confidence. Keeping
in line with our previous study [12], we use MULTI-B to gather
the best result of the solutions in ten Pareto fronts in the given
testing data. Then, we use MULTI-M to gather the median result
of the solutions in ten Pareto fronts in the testing data. Therefore,
MULTI-B and MULTI-M can denote the optimal performance
and the average performance of MULTI method, respectively.

2) Text-Mining-Based Methods: For SVP, the text-mining-
based method was first proposed by Walden et al. [13], [18].

First, they preprocessed source files and extracted text features
(denoted by terms). It included three phases: the tokenization
phase, the stop words removing phase, and the word stemming
phase. In particular, in the tokenization phase, they extracted
identifier names and words in code comments. Then, they broke
identifier names into tokens by using Camel casing convention.
In the stop words removing phase, they considered a list of stop
words by using Snowball.1 Stop words are extremely common
words, which appear to be of little value to differentiate one file
from another. In the word stemming phase, they transformed
each word to its root form. Here, they used a popular stemming
algorithm proposed by Porter [37].

Then, they considered BOW model to compute the weights
of terms. In this model, given a term in the source file, they only
record its term frequency (TF). In this article, we further consider
the TF-IDF model. In this model, the weight of a term is the
production of its TF weight and its inverse document frequency
weight.

After the weight of each term is computed based on either the
BOW model or the TF-IDF model, random forest is used as the
classifier.

1[Online]. Available: http://snowball.tartarus.org/algorithms/english/stop.txt

For the convenience of the subsequent description, we use
BOW-TM to denote the text-mining method based on the BOW
model, and we use TFIDF-TM to denote the text mining method
based on the TF-IDF model.

C. Unsupervised Methods

Unsupervised methods [32], [35] have attracted more interests
in current SDP research. These methods do not need any training
data, are very simple, and have a low model construction cost.
These methods are particularly suitable for new projects without
training data or with limited training data.

The idea of unsupervised methods is motivated by the find-
ings of Koru et al. [38], [39] that smaller modules should be in-
spected first, since the relationship between the module size and
the number of defects is logarithmic. The ManualUp model (i.e.,
smaller modules should be inspected first) proposed by Menzies
et al. [40] further verified Koru et al.’s findings. Until now, many
studies showed the competitiveness of these unsupervised meth-
ods based on the ManualUp model in JIT-SDP and FL-SDP in
terms of effort-aware performance measures [32]–[35].

However, whether unsupervised SVP methods based on the
ManualUp model have competitiveness when compared to su-
pervised SVP methods in terms of the effort-aware performance
measures has not been studied. In the context of SVP, for the
jth metric, it computes the vulnerability-proneness probability
for the ith module mi as 1/vi,j . Here, vi,j denotes the met-
ric value of the ith module mi for the jth metric. This means
that the smaller the metric value, the higher the vulnerability-
proneness probability. Then, all the modules will be ranked in the
descendant order according to the computed probability.

Based on the introduction of experimental subjects in
Section III-A, these subjects considered 12 different metrics to
measure all the extracted modules. Therefore, we consider 12
unsupervised methods based on settings by Yang et al. [32].
These methods are based on LOC, NLOC, NM, CC, NE, HV,
NIC, NICU, NOIC, NOEFC, NOEFCU, and NOECU metrics,
respectively.

http://snowball.tartarus.org/algorithms/english/stop.txt
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D. Performance Measures

Instead of information-retrieval-based measures (such as pre-
cision, recall, and F1), we mainly consider effort-aware perfor-
mance measures (i.e., ACC and Popt). These measures are first
proposed by Mende and Koschke [41], since Arisholm et al. [42]
suggested that locating defects should take into account cost ef-
fectiveness of SDP models. For effort-aware JIT-SDP, Kamei
et al. [9] used the total number of LOC modified by a code
change as the effort required to inspect this change and con-
sidered ACC and Popt measures. These two measures are also
used in follow-up studies on effort-aware JIT-SDP [10]–[12],
[32]. For effort-ware FL-SDP, Yan et al. [34] used the LOC of
a module as the effort of code inspection and also considered
these two measures.

For SVP, efforts for security audit and code inspection should
be considered as well when applying SVP models in practice.
In this article, we use the value of metric LOC as the proxy
of the effort to inspect the module [34], [42]. To compute the
value of these two measures, the modules in the test set should be
sorted, and these modules should be inspected from the top to the
bottom. For the supervised SVP methods, we sort the modules
in the decreasing order according to the predicted vulnerable
proneness of the trained model. For unsupervised SVP methods,
we can directly get the sorted result by the ranking strategy based
on the corresponding metric value. In particular, ACC denotes
the recall of vulnerable modules when expending 20% of the
entire efforts. Popt is the normalized version of one effort-aware
performance indicator. According to [43], Popt can be formally
defined as

Popt(m) = 1− area(optimial)− area(m)

area(optimal)− area(worst)
. (1)

Here, area(m), area(optimal), and area(worst) are the area
under the curve corresponding to a proposed prediction method,
the optimal method, and the worst method, respectively. For the
optimal method, modules are sorted in the descendant order ac-
cording to their actual vulnerability density, while for the worst
method, modules are sorted in the ascendant order according to
their actual vulnerability density. A simple example for illustrat-
ing Popt can be found in Fig. 1. In this figure, the x-axis denotes
the ratio of code inspection efforts and the y-axis denotes the
ratio of found vulnerabilities.

It is not hard to find that the higher the value of perfor-
mance measure, the better the performance of the method.
Both ACC and Popt measures are applicable to supervised and
unsupervised SVP methods.

E. Experiment Setup

In this subsection, we first present data preprocessing oper-
ations. Then, we illustrate two model performance evaluation
scenarios. Finally, we introduce the statistical analysis method
used to analyze whether the performance differences between
two methods are significant.

1) Data Preprocessing: To improve the performance of su-
pervised SVP methods based on the software metric, we perform
the following data preprocessing operations.

Fig. 1. Simple example for illustrating Popt performance measure.

1) Class imbalance learning phase: Compared to defects,
vulnerabilities are far fewer in the project, and detecting
vulnerabilities is like searching for a needle in a haystack
[7]. Shin and Williams [16] found that 21% of the source
code files in Mozilla Firefox have faults, while only 3%
of files have vulnerabilities. In our empirical subjects, the
percentage of vulnerable modules for Moodle is less than
1%, as shown in Table II. Therefore, class-imbalanced
methods [44] are commonly used to improve the perfor-
mance of SVP. In consistent with the study, we use an unsu-
pervised filter (i.e., SpreadSubsample) provided by Weka
package and use the same setting suggested by Walden
et al. [13].

2) Redundant feature removing phase: Redundant features
may reduce the performance of trained models [45]–[50].
We remove highly redundant metrics by the method used
in previous studies [9], [32].

3) Feature value transformation phase: Since most of the
metrics are highly skewed [51], we perform logarithmic
transformation for each numerical metric.

For supervised-based SVP methods using text mining, we
perform data preprocessing only considering class imbalance
learning phase suggested by Walden et al. [13].

Note that for supervised-based SVP methods, class imbalance
phase and redundant feature removing are only performed on the
training set.

2) Model Evaluation Scenarios: In our empirical studies, we
mainly consider two common model evaluation scenarios, and
the process of these two scenarios can be found in Fig. 2.

1) Within-project SVP scenario: Keeping in line with the pre-
vious study [13], we use (10 × 3)-fold cross validation.
The process of threefold cross validation can be summa-
rized as follows: The instances are randomly divided into
three folds of equal size. Each fold has the same ratio of
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Fig. 2. Process of the within-project SVP scenario and the cross-project SVP scenario.

TABLE IV
CLIFF’S δ AND THE EFFECTIVENESS LEVEL [56]

vulnerable modules as the entire dataset. A model is
trained based on the instances in two folds, and the in-
stances in the remaining fold are used as the test data.
This process is repeated three times, and each fold is used
as the test set at least once. To further overcome the effect
of randomness, the threefold cross validation is repeated
ten times. The reason of not using tenfold cross validation
is that the number of security vulnerabilities that some
applications contain is too few. For example, the dataset
of Moodel only contains 24 vulnerabilities. If using ten-
fold cross validation, each fold can only have two to three
vulnerabilities.

2) Cross-project SVP scenario: In this scenario, a model is
trained in one project, and then, this model is used to
identify vulnerable modules in another project. This sce-
nario is applicable for new projects without training data
or projects with limited training data. In SDP, this sce-
nario is widely investigated [52]–[55]. Since there exists
randomness in the class imbalance learning phase (i.e.,
SpreadSubsample method), we perform each SVP method
ten times independently with different random number
seeds when the source project and the target project are
determined.

3) Statistical Analysis Method: To examine whether there
is a significant difference in the prediction performance be-
tween two methods, we first use the Benjamini–Hochberg (BH)
corrected p-value [56] to examine whether a difference is statis-
tically significant at the significance level of 0.05. If the statis-
tical test shows a significant difference, we then use the Cliff’s
δ to measure the magnitude of the difference. The meaning
of different Cliff’s δ values and their corresponding interpre-
tation are shown in Table IV. In summary, one method per-
forms significantly better/worse than another method, if the BH

corrected p-value is less than 0.05, and the effectiveness level
is not negligible based on Cliff’s δ. On the contrary, the differ-
ence between two methods is not significant if the p-value is not
less than 0.05 or the effectiveness level is negligible based on
Cliff’s δ.

IV. RESULT ANALYSIS

A. Result Analysis for RQ1

In this RQ, we want to compare different SVP methods in the
within-project SVP scenario. Here, we use the Scott–Knott test
[57] to group all SVP methods into statistically distinct ranks
(α = 0.05). In particular, it uses the hierarchical cluster analy-
sis to partition all SVP methods into ranks. It starts by dividing
the SVP methods into two ranks on the basis of mean perfor-
mance metric values (i.e., ACC or Popt). If the divided ranks
are significantly different in statistics, it recursively executes
again within each rank to further divide the ranks. It terminates
when ranks can no longer be divided into statistically distinct
ranks. The results of the Scott–Knott test in the within-project
SVP scenario are shown in Fig. 3. The dotted lines represent
groups divided by the Scott–Knott test. All methods are ordered
based on their mean ranks. The distribution of Popt and ACC
at the within-project SVP scenario over all the three projects is
shown using boxplot. The blue label denotes supervised-based
methods using software metrics (i.e., Supervised_SM). The red
label denotes supervised-based methods using text mining (i.e.,
Supervised_TM). The green label denotes unsupervised-based
methods (i.e., Unsupervised). Note that since unsupervised
methods LOC and NLOC have the same ranking results, we
only show the result of the method LOC, and the method NLOC
is omitted in the result analysis.

According to Fig. 3, we find the following: 1) based on the
ACC performance measure, top two groups include six meth-
ods. In particular, LOC and HV are unsupervised methods, and
OneWay, MULTI-B, CBS, and EALR are supervised meth-
ods; and (2) based on the Popt performance measure, the first
group includes four methods. In particular, LOC is the unsu-
pervised method, and OneWay and MULTI-B are supervised
methods.

Table V summarizes the mean ACC and Popt for represen-
tative SVP methods, and for each row, the best result is bolded.
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Fig. 3. Results of the Scott–Knott test in the within-project SVP scenario. (a) ACC. (b) Popt.

TABLE V
RESULT FOR REPRESENTATIVE SVP METHODS IN THE WITHIN-PROJECT SVP SCENARIO
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Fig. 4. Results of the Scott–Knott test in the cross-project SVP scenario. (a) ACC. (b) Popt.

The selection criterion for representative SVP methods2 is set as
follows: For supervised methods based on the software metric,
we consider four recently proposed supervised methods (i.e.,
MULTI-B, OneWay, CBS, and EALR) and choose a method
from methods in Table III with the best performance based on
a specific measure. For supervised methods based on text min-
ing, we consider all the text mining methods (i.e., BOW-TM
and TFIDF-TM). For unsupervised methods, we consider two
methods (i.e., LOC and HV). In the last row of Table V, we show
win/draw/loss (W/D/L) results when comparing MULTI-B with
other SVP methods. W/D/L shows the number of datasets, on
which MULTI-B performs significantly better, the same as, or
worse than the corresponding SVP method, respectively.

According to Table V, we find the following: 1) based on the
ACC performance measure, the best method is MULTI-B, with
mean ACC value ranging from 0.556 to 0.839. Based on the
analysis of W/D/L, MULTI-B performs significantly better than
all the SVP methods on all the datasets; and (2) based on the
Popt performance measure, the best method is also MULTI-B,

2Notice that the selection criterion for representative SVP methods is the same
in Tables V–VIII.

with mean Popt value ranging from 0.699 to 0.855. Based on
the analysis of W/D/L, MULTI-B performs significantly better
than or similar to all the SVP methods on all the datasets.

B. Result Analysis for RQ2

The result of the Scott–Knott test in the cross-project SVP
scenario is shown in Fig. 4. According to Fig. 4, we find
the following: 1) based on the ACC performance measure,
the first group includes two methods. In particular, NLOC
is one unsupervised method, and OneWay is one supervised
method; and 2) based on the Popt performance measure, the
first group includes three methods. In particular, LOC is an un-
supervised method and OneWay and MULTI-B are supervised
methods.

Table VI summarizes the mean ACC and Popt for represen-
tative SVP methods, and for each row, the best result is bolded.
The selection criterion of representative SVP methods is consis-
tent with the criterion used in RQ1 analysis. In the last row of
Table VI, we show W/D/L results when comparing MULTI-B
with other SVP methods. In this table, Drupal => PHPMyAd-
min means that we use Drupal as the source project and use
PHPMyAdmin as the target project.
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TABLE VI
RESULT FOR REPRESENTATIVE SVP METHODS IN THE CROSS-PROJECT SVP SCENARIO

According to Table VI, we find the following: 1) based on
the ACC performance measure, the best methods are OneWay
and LOC. Here, these two methods can achieve the same perfor-
mance. The reason is that OneWay always identifies LOC as the
best unsupervised method based on the analysis of the training
data. Mean ACC values of these methods range from 0.311 to
0.533. Based on the analysis of W/D/L, the results of comparing
MULTI-B with OneWay and LOC is 2/0/4 and 2/0/4, respec-
tively. Moreover, when comparing MULTI with other methods,
the number of win (W) is at least half of times in most cases;
and 2) based on the Popt performance measure, the best meth-
ods are also OneWay and LOC. Here, these two methods can
also achieve the same performance. Mean Popt values of these
methods range from 0.677 to 0.760. Based on the analysis of
W/D/L, the results of comparing MULTI-B with OneWay and
LOC are 2/0/4 and 2/0/4, respectively. Moreover, when compar-
ing MULTI with other methods, the number of win is at least
half of times in all the cases.

C. Result Summary and Implications

Based on the result analysis on two RQs, we find that two un-
supervised SVP methods (i.e., LOC and HV) and four recently
proposed supervised SVP methods (i.e., MULTI, OneWay,
CBS, and EALR) can achieve better performance than other
SVP methods (including two text-mining-based methods) both
in the within-project SVP scenario and in the cross-project
SVP scenario. Therefore, we suggest that these SVP methods
should be considered as baseline methods in the future effort-
aware SVP studies. We especially recommend two unsuper-
vised SVP methods, since these methods have relatively low

computation cost, are easy to implement, and have satisfactory
performance.

Based on our empirical results, we surprisedly find that some
simple unsupervised methods can achieve better performance.
Therefore, there exists a lot of room for improvement by design-
ing more effective SVP methods. We summarize some possible
future research directions. First, there exists curse of dimen-
sionality issue in gathered SVP datasets, especially using the
text-mining-based methods. In this article, we manually remove
the most highly correlated metrics to deal with the risk of mul-
ticollinearity [9]. However, more feature selection methods and
dimensionality reduction methods [58] should be investigated to
reduce the number of features and improve the performance of
SVP models. In particular, feature selection methods can reduce
the number of features in SVP datasets by selecting the most
important ones, while dimensionality reduction methods can re-
duce the number of features by creating combined features from
the original features. Second, we can focus on the class imbal-
anced problem. The problem of class imbalance in SVP is more
challenging than SDP. In consistent with the previous study, we
only use unsupervised filter (i.e., SpreadSubsample) provided
by Weka package and use the same setting suggested by Walden
et al. [13] to deal with this problem. However, more class imbal-
anced methods (such as oversampling methods, undersampling
methods, cost-sensitive methods, ensemble methods, or hybrid
methods) [59]–[61] should be investigated. Third, in this arti-
cle, we only consider manually designed metrics and features
by using the text-mining-based methods. In the future, we can
resort to deep learning (such as long short-term memory model)
and word embedding to automatically learn both semantic and
syntactic features from extracted program modules [62], [63].
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Fig. 5. Results of the Scott–Knott test in terms of PMI@20% performance measure. (a) Within-project SVP scenario. (b) Cross-project SVP scenario.

Then, we use these features to construct more powerful SVP
models.

V. DISCUSSIONS

In Section IV, we mainly analyze the performance comparison
results among different SVP methods both in the within-project
SVP scenario and in the cross-project SVP scenario. In this sec-
tion, we make further discussions. In Section V-A, we analyze
why unsupervised methods can achieve better performance in
terms of effort-aware performance measures and whether these
methods are applicable for practical vulnerability localization.
In Section V-B, we illustrate why unsupervised methods use the
ManualUp model [40] in our study. Finally, in Section V-C, we
analyze whether the computational cost for different supervised
SVP methods is acceptable.

A. Result Analysis for PMI@20% and IFA Measures

In addition to ACC and Popt, we also consider another two
measures (PMI@20% and IFA) recently proposed by Huang
et al. [11] for effort-aware JIT-SDP.

In the context of SVP,PMI@20% returns proportion of mod-
ules inspected with only 20% of the entire efforts. A higher
PMI@20% value indicates that, by only using 20% of the en-
tire efforts, developers need to inspect more modules. It means
that the additional efforts required due to context switches and
additional communication overhead among developers should
not be ignored [64]. Therefore, when only using 20% of the
entire efforts, PMI@20% and ACC evaluate SVP methods
from two different perspectives. We use a simple example to il-
lustrate the difference betweenACC andPMI@20%. Suppose
that there are 1000 modules in the project, of which 20 modules
are vulnerable. If expending 20% of the entire efforts based on
the ranked list by a specific SVP method, we can only inspect
300 modules, of which five modules are vulnerable modules.
Then, the ACC of this SVP method is 5/20 = 25%, and the
PMI@20% of this method is 300/1000 = 30%.

The results of the Scott–Knott test in the within-project
SVP scenario and the cross-project SVP scenario based on
PMI@20% measure are shown in Fig. 5. From this figure,
we can find that given the same inspection effort (i.e., 20% of
cost), the unsupervised methods (LOC and HV methods) and
the supervised method (OneWay) often need to inspect a large
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TABLE VII
RESULT FOR REPRESENTATIVE SVP METHODS IN TERMS OF PMI@20% PERFORMANCE MEASURE

number of modules. According to the description of OneWay in
Section III-B, OneWay can be treated as an unsupervised method
to a certain extent, since it automatically selects the best unsu-
pervised method based on the analysis on the training set. This
finding explains why unsupervised methods can achieve better
prediction performance in terms of effort-aware performance
measures. That is, these methods achieve higher ACC value
and Popt value by inspecting more modules. Table VII summa-
rizes the mean PMI@20% for representative SVP methods in
the within-project SVP scenario and the cross-project SVP sce-
nario, respectively, and for each row, highest PMI@20% value
is bolded. It is not hard to find that for two different scenarios,
the unsupervised method LOC always needs to inspect the large
number of modules (i.e., 73.8% modules) on average when only
given 20% inspection costs.

To approximately show the code size distribution of the pro-
gram modules for each project, we use the histogram to depict
the frequencies of program modules in a certain range of LOC.
The histogram for each project can be found in Fig. 6. From this
figure, we can find that the code size distribution of modules is
highly skewed, especially for the Drupal project and the Moodle
project. For each of these three projects, the size of most modules
is small, while the size of a few modules is large. Therefore, it
is not difficult to understand that the method LOC always needs
to inspect most modules.
IFA returns the number of initial false alarms encountered

before we find the first vulnerable module, which is inspired by
research on automatic software fault localization [65]. A higher
IFA means more false positives (i.e., nonvulnerable modules
are predicted as vulnerable modules) before detecting the first
vulnerable module and may have an impact on developers’
confidence and tolerance [66], [67].

The results of the Scott–Knott test in the within-project SVP
scenario and the cross-project SVP scenario based on the IFA
performance measure are shown in Fig. 7. From this figure, we
can find that for almost all the unsupervised methods, many

Fig. 6. Histogram for each project to show the code size distribution of the
program modules.

highly ranked modules are false positives. On the contrary,
MULTI-A has a smaller IFA value and thereby can improve
developers’ confidence. Table VIII summarizes the mean IFA
for representative SVP methods in the within-project SVP sce-
nario and the cross-project SVP scenario, respectively, and for
each row, the smallest IFA value is bolded. According to
Table VIII, the MULTI-B method almost can achieve the small-
est IFA value. For most of the cases, the first module inspected
by MULTI-B is the vulnerable module. In addition to the MULTI
method, the traditional model RS+NB and two text-mining-
based methods also show the competitiveness on the IFA mea-
sure. In summary, we find almost all the unsupervised methods
have high false alarms, and this may have an impact on devel-
opers confidence and tolerance. Supervised methods especially
for MULTI and text-mining-based methods are preferred when
considering IFA measure.
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Fig. 7. Results of the Scott–Knott test in terms of IFA performance measure. (a) Within-project SVP scenario. (b) Cross-project SVP scenario.

B. Result Analysis for Comparing Unsupervised Methods With
Different Ranking Strategies

In this subsection, we compare unsupervised methods with
different ranking strategies. In our empirical studies, we con-
sider unsupervised methods, which rank all the modules in the
ascendent order in terms of a specific metric. Here, we further
consider unsupervised methods, which rank all the modules in
the descendent order.

The comparison result in the within-project SVP scenario can
be found in Fig. 8, and the comparison result in the cross-project
SVP scenario can be found in Fig. 9. The blue label denotes unsu-
pervised methods based on the descendent order, and the suffix of
these methods is D. The black label denotes unsupervised meth-
ods based on the ascendent order, and the suffix of these methods
is A. Based on empirical results, we can find that most of the
unsupervised methods based on the ascendent order outperform
corresponding unsupervised methods on the descendent order.
Among these unsupervised methods, the unsupervised method
LOC_A can achieve the best performance except for the within-
project SVP scenario using ACC. However, in this scenario, the
method LOC_A is still in the first group.

C. Computational Cost Analysis

In this subsection, we analyze the model construction time
for different SVP methods. Since unsupervised methods do not
need any training data and are very simple (i.e., compute the vul-
nerability probability only by using the specific metric value),
their running speed is very fast. Therefore, we only compare
supervised-based SVP methods. All the methods are run on ma-
cOS High Sierra operation system (Intel i5-7360U CPU with
8 GB of memory). The average model construction time for
each run in the cross-project SVP scenario is shown in Table IX.
From Table IX, we can find that the model construction time
of different SVP methods is acceptable. Except for MULTI, the
model construction time of all the other SVP supervised meth-
ods never exceed 2 s for each run. For MULTI, since this method
uses NSGA-II [36] to search for the Pareto front, the model con-
struction time is larger than all the other methods. However, the
construction time varies only from 3.362 to 6.899 s.

VI. THREATS TO VALIDITY

In this subsection, we mainly discuss the potential threats to
validity of our empirical studies.
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TABLE VIII
RESULT FOR REPRESENTATIVE SVP METHODS IN TERMS OF IFA PERFORMANCE MEASURE

Fig. 8. Comparing Unsupervised methods with different ranking strategies in
the within-project SVP scenario. (a) ACC. (b) Popt.

Threats to internal validity are mainly concerned with the
uncontrolled internal factors that might have influence on the
experimental results. First, we have double checked our exper-
iments and implementations of different SVP methods. Still,
there could be errors that we have not noticed. Second, to guar-
antee the correctness of classifiers and statistical analysis meth-
ods, we use mature third-party libraries, such as R and Weka.
Third, we use the default value of hyperparameter for our super-
vised SVP methods. Hyperparameter optimization may improve
the performance of SVP methods and need further investigating
in our future work. Finally, we use the code shared by Walden
et al. [13] to ensure the correctness of classical baseline methods.

Fig. 9. Comparing unsupervised methods with different ranking strategies in
the cross-project SVP scenario. (a) ACC. (b) Popt.

The code includes the random forest method based on software
metrics and the text mining method based on the BOW model.

Threats to external validity are about whether the observed
experimental results can be generalized to other subjects. We
only consider web applications projects written in PHP. These
datasets are high quality and widely used in previous SVP studies
[13], [20]–[22]. In the future, we want to consider more commer-
cial and open-source projects by other programming languages.
Also, we want to investigate more projects in other application
domains, such as mobile applications [68]. When investigating
other projects, the metrics either based on traditional software
metrics or based on term vectors by text mining (introduced
in Section III-A) are independent of programming languages.
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TABLE IX
MODEL CONSTRUCTION TIME OF DIFFERENT SUPERVISED-BASED SVP

METHODS IN THE CROSS-PROJECT SVP SCENARIO (UNIT: SECOND)

Therefore, we can directly use these metrics to measure the mod-
ules extracted from projects using other programming languages
or from other application domains. However, common vulner-
abilities of different applications are quite different. Therefore,
designing extra specific metrics may improve the performance
of SVP models when considering the characteristic of these
application domains.

Threats to conclusion validity are mainly concerned with in-
appropriate use of statistical analysis techniques. We perform
the Scott–Knott test to rank a great number of SVP methods
and Scott–Knott is widely used in previous empirical studies for
SDP [8], [11], [12], [32].

Threats to construct validity are about whether the perfor-
mance measures used in the empirical studies reflect the real-
world situation. In this article, we consider effort-aware perfor-
mance measures (i.e., ACC and Popt), which are more com-
mon and suitable for real test scenarios (considering the testing
resources are limited). Therefore, information-retrieval-based
measures (such as precision, recall, and F1) are not considered
in this article.

VII. CONCLUSION

Compared to SDP, research on SVP has yet to mature. In
this article, we considered 48 different supervised and unsuper-
vised SVP methods. In our empirical studies, we used three web

applications as benchmark, including 3466 modules and 223
vulnerabilities. Based on effort-aware performance measures,
we found that some unsupervised methods (i.e., LOC and HV)
and recently proposed state-of-the-art supervised methods (i.e.,
MULTI, OneWay, CBS, and EALR) can achieve better perfor-
mance both in the within-project SVP scenario and in the cross-
project SVP scenario. Finally, we also thoroughly analyze the
reasons why unsupervised SVP methods can achieve better per-
formance and point out the problem when using unsupervised
SVP methods in practice.

In the future, we plan to extend our research in several ways.
We first want to investigate the generalization of our empirical
results by considering more open-source projects or commer-
cial projects. Second, we want to consider more novel metrics
related to security vulnerabilities, since previous studies find that
the performance of SVP models based on traditional software
metrics is poor [7], [14], [69]. Third, in addition to cross vali-
dation, we want to investigate other model evaluation methods
(such as holdout and bootstrapping [70]) for the within-project
SVP scenario. Finally, we want to investigate the actual efforts
required to inspect different modules.
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